

Multi-wavelength and Multi-messenger Modeling of Blazars

Shan Gao

Collaborators : Walter Winter, Martin Pohl, Xavier Rodrigues, Anatoli Fendynitch and Denise Boncioli

Oct. 04, 2017

Figure: LIGO/Virgo/B. Farr (University of Oregon)

Figure: Murase, Ahlers, Lacki PRD 2014

1. Intro 2. Blazar: SED v 3. Blazar: v CR

4. Summary & Outlook

1. Intro

- 2. Blazar:SEDv3. Blazar:vCR
- 4. Summary and Outlook

: Fermi 3FHL Sky Map

Figure: Dominguez et al. 1702.00664

 γ

γ : Fermi 3FHL sources

Most are blazars

Figure: Dominguez et al. 1702.00664

Figure: blazar, Urry & Padovani 95

Ghisellini et al, MNRAS 469(2017), arXiv: 1702.02571

Emission from different zones. Cases for a BL Lac & an FSRQ

Leptonic:

e⁻ Synchrotron, IC, γγ-absorption

Ghisellini et al, MNRAS 469(2017), arXiv: 1702.02571

Hadronic (LH π):

$$p+\gamma(p) \rightarrow \pi + p(n)$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+}(\pi^{-}) \rightarrow \nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e} (\overline{\nu}_{e}) + e^{+}(e^{-})$$

Leptonic:

e- Synchrotron , IC , $\gamma\gamma$ -absorption

 $e \rightarrow \gamma$

44 42 10 15 20 25 $Log \nu$ [rest frame]

Hadronic (LH π):

 $p+\gamma(p) \rightarrow \pi + p(n) \qquad \mathbf{Lv} \approx \mathbf{L\gamma}$ $\pi^{0} \rightarrow \gamma + \gamma$ $\pi^{+}(\pi^{-}) \rightarrow \nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e} (\overline{\nu}_{e}) + e^{+}(e^{-})$

Can blazars be:

- All hadronic ? Then sufficient for v
- Both v and UHECR source ?

Which type (SED) to look for ?

What composition (UHECR) ?

Figure: Murase, Ahlers, Lacki PRD 2014

1. Intro

4. Summary and Outlook

In v search, why is entire & detailed SED

needed?

Case: FSRQ PKS B1424-418

Fermi: Burst Phase 2012.6 - 2013.3

IceCube 2PeV event: 2012.12 (IC35)

Figure: Krauss, F. 2016 HAP workshop, Cochem

Figure: Krauss, F. 2016 HAP workshop, Cochem

Figure: Krauss, F. 2016 HAP workshop, Cochem

Kadler et al, Nature Phys. 2016

 π^0 decay \rightarrow Lv ~ Lγ \rightarrow 4.5 v in PeV

- LH π not applicable for PKS B1424
- SSC dominates
- X-ray range : hadronic

SG, Pohl and Winter, 1610.05306, ApJ 2017

Parameter Scan (Lp, E_{p,max})

- v-best : overshoots X-ray
- SED-best : no PeV v

! Tension between v and SED

Results

- v-SED joint-best : 3.2% chance to fit IC35
- Low state (2 yr before IC35) : 5.7 % chance

IC 35 and Burst: correlation insignificant

SG, Pohl and Winter, 1610.05306, ApJ 2017

Hadronic (LH π) model

- Works for some blazars
 e.g. Mrk 421, HBLs
- 1PeV-10PeV v
- Boost of detection rate

insignificant : earth absorption

Petropoulou et al. Astropart. Phys. 2016

Proton syn model

- 3C 279. Needs high mag. field (~150G this case)
- 300 PeV ν , but not efficient
- emission from mesons produces TeV

Diltz, Böttcher and Fossati, ApJ 2015

1. Intro 2. Blazar: SED v 3. Blazar: v CR

4. Summary & Outlook

Blazars and UHECR

- Auger indicates a heavy composition
- If blazars are sources of UHECR, consequences of injecting nuclei in AGN ?
- consistent with IceCube v ?

Auger global fit, 1612.07155

Start with a Proton model

too many high energy v

Murase et al, 1403.4089, PRD 14

Nuclear model

Photo-disintegration

Rodrigues, Fedynitch, SG, Boncioli, Winter, to appear soon.

Low reaction rates nuclear survival (in low-luminosity BL Lac)

High reaction rates nuclear cascade (in high-luminosity FSRQ)

Rodrigues, Fedynitch, SG, Boncioli, Winter, to appear soon.

v spectrum as a function of injecting composition

Ev,max shifts to lower : better compatibility with lceCube

Rodrigues, Fedynitch, SG, Boncioli, Winter, to appear soon.

v CR production efficiency as a function of blazar luminosity

Rodrigues, Fedynitch, SG, Boncioli, Winter, to appear soon.

Opposite trends:

High Lum. FSRQ \rightarrow v emitterLow Lum. BL Lacs \rightarrow UHECR emitter

Summary

- SED of blazar strongly constrains v and CR; All blazars cannot be hadronic $(Lv \neq L\gamma)$
- Nuclear blazar, compared with proton models, yields better v compatibility with IceCube.
- Opposite trends between v and CR emissivity along the blazar sequence (different Lγ) : FSRQ - v; HBL - CR;
- Future: identify gamma-ray signals CTA; to reveal if blazars can be both v and UHECR sources (incl. diffuse sources).
 Time-domain; new observables (polarization, PSD, ...)

backup

Nuclear feed back to the system, self-consistent

γ signatures of nuclear interactions, TeV ? CTA ?

The BL Lac and FSRQ families

Cannot be all hadronic...

Figures: Ghisellini et al, MNRAS 469(2017), arXiv: 1702.02571

Simulated, from f(L,z)

Observed

Ghisellini et al, MNRAS 469(2017), arXiv: 1702.02571

SG, Pohl, Winter. In prep.

Sub-threshold sources ?

New observables

Polarization

Time-domain, flare, correlation, PSD

Analytical arguments

- Each constraints -> allowed
 parameterregions on Γ and Β
- No overlaping region that satisfies all: hadronic model ruled out
- A similar approach kills p-syn model

Figure: SG, Pohl, Winter, ApJ 2017

Neutrino production

Figure: IceCube collaboration

IceCube analysis 2LAC blazars

Low-state result

- Results are similar
- Low-state duration is longer (2yr)
- SED-NU joint best-fit is better

Conclusion

- SED is leptonic dominated for PKS B1424-418
- Low and Burst state modeled self-consistently by perturbing Le and Lp
- Low-state has an even better probability to observe PeV NU

	Low (2yr)	Burst
Lp	baseline	0.5 x
Le	baseline	2.5 x
Pv	5.7%	3.2%

