Multi-messenger signal from Gamma-Ray Bursts

Source: NASA

Winter, Walter DESY, Zeuthen, Germany

Neutrinos in the multi-messenger era

Louvain-la-Neuve, Belgium Nov. 29-Dec. 2, 2022

DESY

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Contents

- Introduction
- Models for the prompt phase emission
- Multi-messenger tests of the UHECR paradigm (conventional GRBs), role of neutrino bounds
- Multi-messenger test of the gravitational wave connection
- Energetic GRBs and GRB 221009A
- Neutrino and UHECR emission from low-luminosity GRBs
- Summary and conclusions

GRB prompt emission ... and different populations

Daniel Perley

Several populations, such as

- Long-duration bursts (~2 – 100s), from collapses of massive stars? HL-GRBs
- Short-duration bursts
 (~ 0.1 2 s) sGRBs,
 from neutron star mergers?
 Can have high luminosity,
 but low total energy output!
- Low-luminosity GRBs from intrinsically weaker engines, or shock breakout? LL-GRBs Potentially high rate, longer duration

Liang, Zhang, Virgili, Dai, 2007; see also: Sun, Zhang, Li, 2015

DESY.

Waxman, Bahcall, 1997; Guetta et al, 2003; He et al, 2012

Page 5

The Waxman-Bahcall paradigm and possible interpretations

• Required ejected UHECR energy per transient event to power UHECRs:

Waxman, Bahcall, ...; formula from Baerwald, Bustamante, Winter, Astropart. Phys. 62 (2015) 66; Fit energetics: Jiang, Zhang, Murase, arXiv:2012.03122

Possible interpretation of non-observation of neutrinos:

- The one zone model is an over-simplification. Different messengers come from different regions.
- The parameters of the UHECR-emitting GRBs are very different.
 Do only very energetic GRBs accelerate UHECRs? How about low-luminosity GRBs?
- The UHECR acceleration takes place in very different zones, e.g. in magnetic reconnection areas (large R), in the afterglow etc, where the neutrino production is less efficient
- The baryonic loading is wrong. What do we expect from/need for UHECR data? What is allowed from hadronic signatures in the electromagnetic spectrum?

GRBs simply do not accelerate/power the UHECRs

Models for the prompt phase emission

Outflow models

Applied to internal shocks

Continuous outflow: $t'_{dyn}=R_c/(c \Gamma)$

80

T_{obs} [s]

6783

Neutrino production efficiency in GRBs

• Pion production efficiency f_{π} (~ 0.2 $\tau_{p\gamma}$) from photon energy density:

• Production radius R and luminosity L_{γ} are the main control parameters for the particle interactions [for fixed t_{ν}] \rightarrow Neutrino production, EM cascade from secondaries, nuclear disintegration, etc.

e.g. Guetta et al, 2003; He et al, 2012; Zhang, Kumar, 2013; Biehl et al, arXiv:1705.08909 (Sec. 2.5); Pitik et al, 2021

(redshift neglected

shock rest frame)

for simplicity! Primed quantities:

Example: Nuclear cascade (UHECR iron nuclei)

Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909; see also Murase et al, 2008; Anchordoqui et al, 2008

Example: Nuclear cascade

Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909; see also Murase et al, 2008; Anchordoqui et al, 2008

Example: Nuclear cascade

Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909; see also Murase et al, 2008; Anchordoqui et al, 2008

Example: Nuclear cascade

Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909; see also Murase et al, 2008; Anchordoqui et al, 2008

Model dependence of prompt neutrino flux? (one zone models)

Ed Ee

Similar neutrino fluxes under the assumption of similar total jet energy and certain dissipation efficiencies.

Parameter	Symbol			Model	
		IS PH-IS	3-COMP	ICMART	
Total jet energy	\tilde{E}_{iso}		$3.4 \times$	$10^{54} \mathrm{~erg}$	
Jet opening angle	$ heta_j$			3°	
Lorentz boost facto	or Γ				
Redshift	z				
Duration of the bur	st $t_{\rm dur}$				
Variability time sca	le t_v	0.5 s			
Dissipation efficience	ε_{d}	$\varepsilon_{\rm IS} = 0.2$	n/a	$\varepsilon_d = 0.35$	
Electron energy fract	tion ε_e	0.0)1	0.5	
Proton energy fracti	on ε_p	0.	1	0.5	
Electron power-law ir	$dex k_e$	2.2	n	/a	
Proton power-law in	dex k_p	2.5	2	2	
Magnetization at <i>F</i>	$r_{\gamma} \sigma$	n/a 45			
					_
Model	$\eta_{\gamma}\left(\% ight)$	$\tilde{E}_{\gamma,\mathrm{iso}}\left[\mathrm{e}\right]$	$erg]$ \tilde{E}_{i}	$_{\nu,\mathrm{iso}}\left[\mathrm{erg}\right]$	
IS	0.2	6.8×10	0^{51} 2.3	3×10^{48}	η _γ =
PH-IS	20	6.9×10	0^{53} 7.2	2×10^{49}	
3-COMP	0.3	8.7 imes 10	0^{51} 5.2	2×10^{48}	
ICMART	17.5	6×10	53 1.8	8×10^{51}	

Pitik, Tamborra, Petropoulou, JCAP 05 (2021) 034

However:

- Radiative efficiency of IS model low (E_{γ,iso} does not describe typical GRB)
- Not clear if jet power is sufficient to power UHECRs
- Efficiencies and partition parameters somewhat ad hoc

Multi-messenger tests of the UHECR paradigm

The vanilla one-zone prompt model Neutrino and cosmic ray emission at same collision radius R

- Can describe UHECR data, roughly
- Scenario is constrained by neutrino nonobservatons

Recipe:

- Fit UHECR data, then compute predicted neutrino fluxes
- Here only one example; extensive parameter space studies have been performed
- Conclusion relatively robust for parameters typically expected for HL-GRBs

Biehl, Boncioli, Fedynitch, Winter, arXiv:1705.08909 Astron. Astrophys. 611 (2018) A101; Baerwald, Bustamante, Winter, Astropart. Phys. 62 (2015) 66

Back to the roots: Multi-collision models

The GRB prompt emission comes from multiple zones (one GRB)

Observations

- The collision radius can vary over orders of magnitude
- The different messengers prefer different production regions; one zone therefore no good approximation
- The neutrino emission can be significantly lower
- The **engine properties** determine the nature of the (multi-messenger) light curves, and where the collisions take place
- Many aspects studied, such as impact of collision dynamics, interplay engine properties and light curves, dissipation efficiency etc.

A unified engine model with free injection compositions

Systematic parameter space study requires model which can capture stochastic and continuous engine properties

Model description

DESY. | MM Belgium 2022 | Winter Walter

Description of UHECR data

Inferred neutrino fluxes from the parameter space scan

Prompt neutrino flux possibly testable with IceCube-Gen2, cosmogenic one in future radio instruments

Heinze, Biehl, Fedynitch, Boncioli, Rudolph, Winter, MNRAS 498 (2020) 4, 5990, arXiv:2006.14301

Interpretation of the results

 The required injection compositon is derived: more that 70% heavy (N+Si+Fe) at the 95% CL

 Self-consistent energy budget requires kinetic energies larger than 10⁵⁵ erg – perhaps biggest challenge for UHECR paradigm?

	SR-0S	$\operatorname{SR-LS}$	WR-MS	WR-HS
E_{γ}	$6.67 \cdot 10^{52} \text{ erg}$	$8.00 \cdot 10^{52} \text{ erg}$	$8.21 \cdot 10^{52} \text{ erg}$	$4.27 \cdot 10^{52} \text{ erg}$
$E_{\rm UHECR}^{\rm esc}$ (escape)	$2.01 \cdot 10^{53} \text{ erg}$	$2.10 \cdot 10^{53} \text{ erg}$	$1.85 \cdot 10^{53} \text{ erg}$	$1.69 \cdot 10^{53} \text{ erg}$
$E_{\rm CR}^{\rm src}$ (in-source)	$5.11 \cdot 10^{54} \text{ erg}$	$5.13 \cdot 10^{54} \text{ erg}$	$4.62 \cdot 10^{54} \text{ erg}$	$4.36 \cdot 10^{54} \text{ erg}$
$E_{\rm UHECR}^{\rm src}$ (in-source, UHECR)	$3.70 \cdot 10^{53} \text{ erg}$	$4.46 \cdot 10^{53} \text{ erg}$	$3.97 \cdot 10^{53} \text{ erg}$	$3.57 \cdot 10^{53} \text{ erg}$
$E_{ u}$	$7.81 \cdot 10^{49} \text{ erg}$	$2.18 \cdot 10^{50} \text{ erg}$	$1.28 \cdot 10^{51} \text{ erg}$	$1.79 \cdot 10^{51} \text{ erg}$
$E_{kin,init}$ (isotropic-equivalent)	$2.90 \cdot 10^{55} \text{ erg}$	$3.03 \cdot 10^{55} \text{ erg}$	$4.50 \cdot 10^{55} \text{ erg}$	$7.81 \cdot 10^{55} \text{ erg}$
Dissipation efficiency $\epsilon_{\rm diss}$	0.28	0.22	0.13	0.14

• Light curves may be used as engine discriminator

 Description of σ(X_{max}) is an instrinsic problem (because the data prefer "pure" mass groups, which are hard to obtain in multi-zone or multi-source models)

Heinze, Biehl, Fedynitch, Boncioli, Rudolph, Winter, MNRAS 498 (2020) 4, 5990, arXiv:2006.14301

Multi-messenger tests of the gravitational wave connection

Neutrinos from sGRB 170817A? associated with the BNS merger

Experimental result

Neutrino fluence prediction for this sGRB (one zone)

The baryonic loading is constrained by the Thomson optical depth – which must be higher for higher OA (since measured γ -ray flux fixed!)

ANTARES, IceCube, Auger, LIGO, VIRGO, 2017

DESY. | MM Belgium 2022 | Winter Walter

Biehl, Heinze, Winter, MNRAS 476 (2018) 1, 1191; see also Ahlers, Halser, 2019

Energetic GRBs

Example: GRB 221009A

- E_γ ~ 3 10⁵⁴ erg at z ~ 0.151
- Observations of photons up to 18 TeV (LHAASO) [?]
- Can be interpreted as signature of UHECRs interacting with the extragalactic background light (if the EGMF is extremely tiny...) Das, Razzaque, 2022; Alves Batista, 2022; Mirabal 2022 Evidence for UHECR acceleration?

(most alternative explanations are even more exotic...)

Astronomers just spotted the most powerful flash of light ever seen

By Tereza Pultarova published 25 days ago

The gamma-ray burst was also the nearest ever detected.

Gamma-ray bursts are the most energetic flashes of light known to exist in the universe. (Image credit: NASA, ESA and M. Kornmesser)

Why are energetic GRBs interesting?

A case study with GRB 221009A

• Assume that $E_0 \sim M_{\odot} \sim 2 \ 10^{54}$ erg available as initial energy (\rightarrow progenitor/collapsor models, rot. energy ...)

$$E_{\rm iso}^{\rm kin} \simeq \varepsilon_{\rm jet} \, \frac{4\pi}{\Omega} \, E_0 \simeq 0.2\,536 \, E_0 \, \simeq 100 \, E_0 \simeq 2\,10^{56} \, {\rm erg}$$

Here: 20% of energy into jet assumed, jet opening angle 3.5° from measured jet break (GCN 32755)

Rudolph, Petropoulou, Bosnjak, WW, to appear. Based on GBM catalogue Poolakkil et al., 2021

GRB 201009A – why have no neutrinos been seen?

Example: Internal shock model, one zone model

Hadronic signatures in the electromagnetic spectrum

Example: Energetic GRB with $E_{\gamma,iso} \sim 10^{54}$ erg, single pulse, synchrotron (fast) cooling dominated SED, large $R_C \sim 10^{16}$ cm

Contribution from different components

Impact of baryonic loading:

Spectral index -1.5 in fast cooling regime

- \rightarrow Neutrino production dominated by low photon energies
- \rightarrow Hadronic contributions enhance neutrino production
- \rightarrow High peak neutrino energies

Baryonic loading 3-10 do not modify electromagnetic spectrum at peak!

Rudolph, Petropoulou, Bosnjak, WW, to appear. See also Asano, Inoue, Meszaros, 2009

Application to GRB 221009A (1)

- Baryonic loading 1/f_e ~ 3 consistent with UHECR paradigm, LHAASO photons from EBL interactions, ~energy equipartition
- Intermittent engine t_{var} ~1s, quiescent period ~ 200s, R_C ~ 10¹⁶ cm
- Spectrum does not carry significant hadronic signatures; neutrino spectra consistent with non-observation

Application to GRB 221009A (2)

Example with smaller $R_C \sim 10^{14}$ to $10^{15} \mbox{ cm}$

- Hadronic signatures expected for low enough R_C, high enough baryonic loading
- Constraints from Fermi-LAT vs. neutrino data?

Challenges:

- Effects of pile-up in LAT data?
- Baryonic loading 30 can be excluded on energetics grounds (see earlier) Rudolph, Petropoulou, WW, Bosnjak, to appear.
- Small R_C challenged by stacking limit if all energetic GRBs are alike (selfconsistent radiation model) Rudolph, Petropoulou, Bosnjak, WW, to appear.
- Nonlinear feedback from EM cascade on SED/neutrino production?

Riu, Zhang, Wang, arXiv:2211.14200

Low-luminosity GRBs

Describing UHECRs and neutrinos with LL-GRBs

- Can be simultaneously described
- The radiation density controls the neutrino production and subankle production of nucleons
- Subankle fit and neutrino flux require similar parameters

Boncioli, Biehl, Winter, ApJ 872 (2019) 110; arXiv:1808.07481; see also Murase et al, 2006

Injection composition and escape from Zhang et al., PRD 97 (2018) 083010;

Systematic parameter space studies

What are the model parameter expectations driven by data?

Open issues for LL-GRBs

Continuous outflow model, $\Gamma \sim 10-40$

• Can the necessary maximal energies be reached?

Conclusion: yes, because in multi-collision models the X-rays and UHECRs come from different regions

- What can we learn about the typical parameters?
 - T₉₀ <~ 10⁵ s (from EGB contribution). Are the typical LL-GRB ultra-long?
 - Necessary baryonic loading ~ 10; allowed by SED!

Rudolph, Bosnjak, Palladino, Sadeh, WW, MNRAS 511 (2022) 4, 5823; see also discussions in Samuelsson et al, 2019+2020 for one zone model

Summary

UHECR paradigm for different GRB classes (prompt emission), and the implications for neutrino production

HL-GRBs

- Well-studied source class
- Can describe UHECR spectrum and composition X_{max}
- Multi-collision models work for a wide range of parameter sets; neutrino stacking limits obeyed
- Light curves may be used to further narrow down models
- Cannot describe diffuse neutrinos
- Composition variable σ(X_{max}) requires some fine-tuning
- Energetics in internal shock scenario is a challenge; more energy in afterglows than previously thought? VHE γ–rays?

LL-GRBs

- Potentially more abundant than HL-GRBs
- Can describe UHECR spectrum and composition across the ankle
- May at the same time power the diffuse neutrino flux
- Less established/studied source class = more speculative
- Progenitor model disputed
- Energetics require relatively long "standard" LL-GRBs

sGRBs

- Connection with GW physics
- Energy budget low for UHECR/ neutrino signals

Energetic GRBs

- Do not require very large baryonic loadings, energy equipartion between electrons and protons?
- Will have a new, well studied prototype (GRB 221009A)
- Synchrotron fast-cooling regime and hadronic SED components may enhance neutrino production; typical neutrino energies higher than previously thought? Radio detection?
- Unclear if a separate population and how large the local rate is
- Energetics may scrutinize conventional internal shock models
- Neutrino (per GRB) fluence not as high as one may have hoped for

BACKUP

Challenge: How do cosmic rays escape from the source?

Neutron model

Only neutrons can escape Ahlers, Gonzalez-Garcia, Halzen, Astropart. Phys. 35 (2011) 87

- Direct escape (aka "high pass filter", "leakage", …) Charged cosmic rays can efficiently escape if Larmor radius reaches size of region (conservative escape contribution, green curve, hard) (predicted in: Baerwald et al, ApJ 768 (2013) 186)
- All escape, advective/free-streaming escape (most aggressive scenario, dashed curve, ~ E⁻²)
- Diffusive escape: e. g. Escape rate ~ (R_L)^α (compromise, but highly assumption dependent)
 e.g. Unger et al, 2015; Kachelrieß et al, 2017; Fang, Murase, 2017; ...
- Current Auger best-fit supports direct escape hypothesis (requires E⁻¹ from sources); possibly neutrons below ankle? (e. g. Unger, Farrar, Anchordoqui, 2015)

DESY. | MM Belgium 2022 | Winter Walter

(GRB, protons, without propagation effects)