Ultra-high-energy cosmic rays from star-forming galaxies constrain the extragalactic magnetic field

Arjen van Vliet Andrea Palladino, Walter Winter and Andrew Taylor EPS-HEP2021 conference, 26/07/2021

AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

tablished by the European Commission upporting top researchers om anywhere in the world

European Research Cound

European Commission

Horizon 2020 European Union funding for Research & Innovation

Image: Pierre Auger Observatory

Ultra-high-energy cosmic rays (UHECRs)

 10^{38}

600

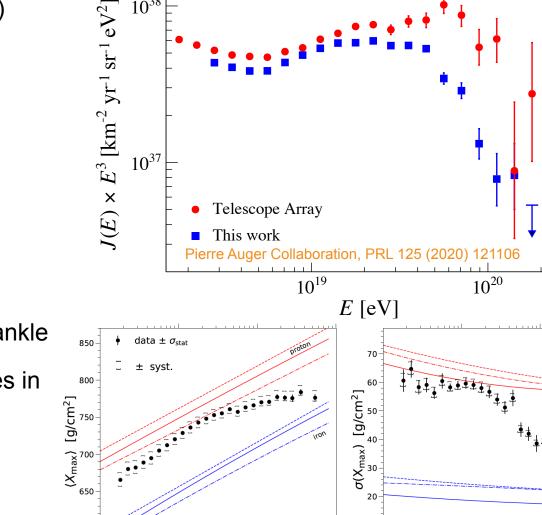
17.0

17.5

18.0

18.5

lg(E/eV)


19.0

Pierre Auger Collaboration, PoS ICRC2019 482

19.5

20.0

- Nuclei from protons to iron with $E > 10^{18} \text{ eV}$ (= 1 EeV) .
- Main experiments: .
 - Pierre Auger Observatory in Argentina
 - Telescope Array in the US •
- Features in the energy spectrum ٠
 - 'Ankle' at ~5×10¹⁸ eV
 - 'Instep' at ~14×10¹⁸ eV
 - 'Suppression' at ~47×10¹⁸ eV
- Composition, getting increasingly heavier above the ankle
- No identified sources yet, but indication of anisotropies in • the arrival directions have been detected

10-

17.0

17.5

Page 2

19.0

19.5

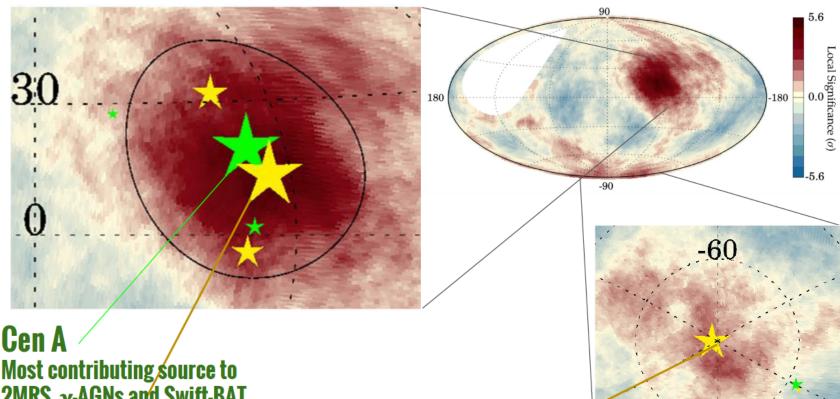
20.0

18.5

lg(E/eV)

Preliminarv

18.0


Indication of anisotropy in arrival directions found by Auger

Pierre Auger Collaboration, Astrophys. J. Lett. 853 (2018) 2

Pierre Auger Collaboration, PoS ICRC2019 206

- Largest post-trial significance for correlation with starburst/starforming galaxies
- Catalogue of 32 nearby galaxies
- Most important sources:
 - NGC 253, NGC 4945, Circinus and M83
 - 4 nearest sources in the catalogue within the field of view of Auger

Catalog	E _{th}	θ	f _{aniso}	TS	Post-trial
Starburst	38 EeV	$15^{+5}_{-4}^{\circ}$	11^{+5}_{-4} %	29.5	4.5 σ
γ-AGNs	39 EeV	14^{+60}_{-4}	$6^{+4}_{-3}\%$	17.8	3.1 σ
Swift-Bat	38 EeV	15^{+60}_{-4}	8+4%	22.2	3.7 σ
2MRS	40 EeV	15^{+7}_{-4}	$19^{+10}_{-7}\%$	22.0	3.7 σ

Most contributing source to 2MRS, _Y-AGNs and Swift-BAT NGC 4945 Most contributing source to starburst

NGC 253 2nd-most contributing source to starburst

ICRC 2019 presentation by L. Caccianiga

Constraints on extragalactic magnetic fields and local source density

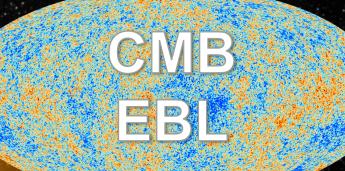
AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

- Galactic and extragalactic magnetic fields (GMF and EGMF) deflect UHECRs
- θ: optimal angular width around sources, measure for the deflection of UHECRs from those sources
- A larger local source density means more contributing sources, reducing the expected level of anisotropy
- f_{aniso}: fraction of UHECRs from the catalogue sources, directly related to the source density
- Auger results can be used to constrain magnetic fields and local source density

Catalog	E _{th}	θ	f _{aniso}	TS	Post-trial
Starburst	38 EeV	$15^{+5}_{-4}^{\circ}$	11^{+5}_{-4} %	29.5	4.5 σ
γ-AGNs	39 EeV	14^{+60}_{-4}	$6^{+4}_{-3}\%$	17.8	3.1 σ
Swift-Bat	38 EeV	15^{+60}_{-4}	$8^{+4}_{-3}\%$	22.2	3 .7 σ
2MRS	40 EeV	15^{+7}_{-4} °	19^{+10}_{-7} %	22.0	3 .7 σ

Pierre Auger Collaboration, PoS ICRC2019 206

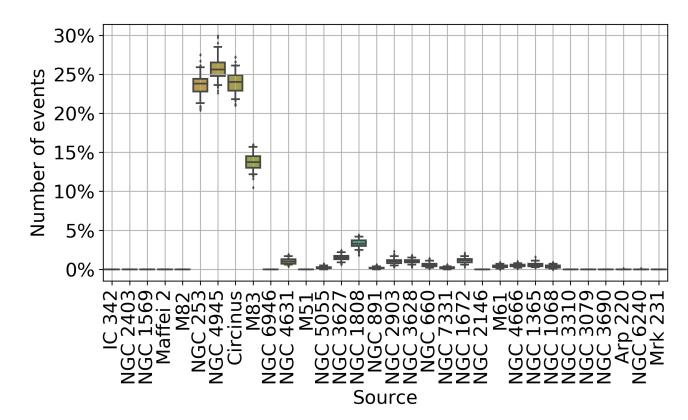
UHECR


EGMF

UHECR propagation:

- Creation at sources
- Deflections by magnetic fields
- Interactions with CMB and EBL
- Nuclear decay
- Detection at Earth

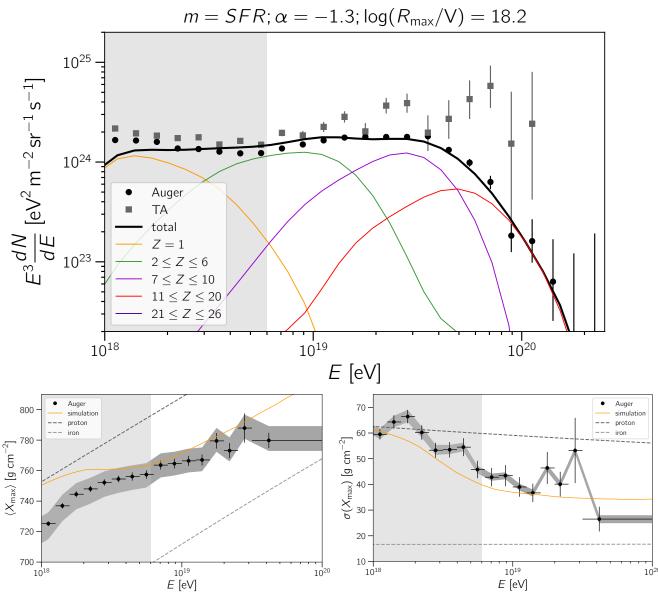
See crpropa.desy.de R. Alves Batista, A. Dundovic, M. Erdmann, K.-H. Kampert, D. Kümpel, G. Müller, G. Sigl, <u>AvV</u>, D. Walz and T. Winchen, JCAP 1605 (2016) 038


- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found

4 important sources

AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732, submitted to MNRAS

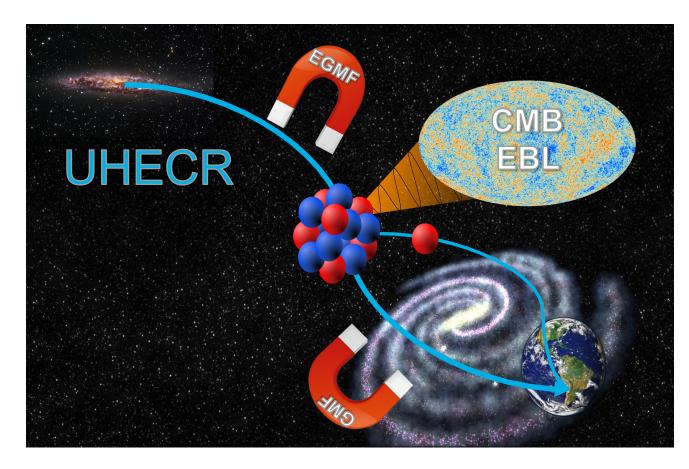
- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{RMS} < 10 nG$, $0.2 < I_{coh} < 10 Mpc$; $B = B_{RMS} \times \sqrt{I_{coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with an isotropic contribution from background sources


DESY. UHECRs from star-forming galaxies constrain the EGMF strength

UHECR spectrum and composition

AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732

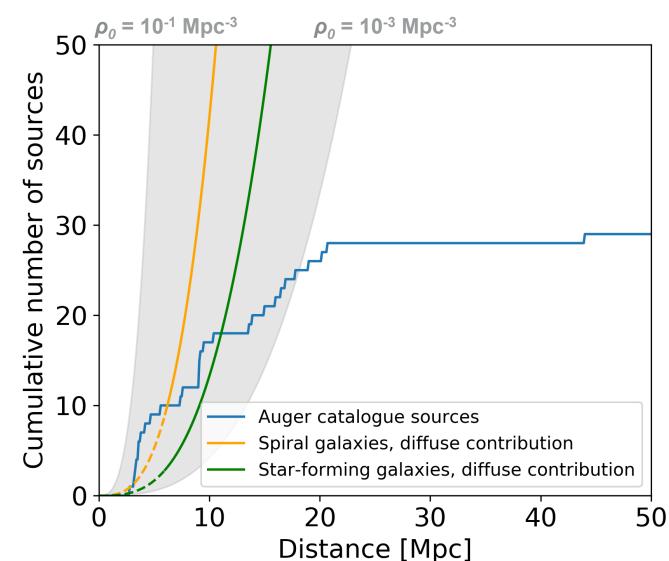
- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{RMS} < 10$ nG, $0.2 < I_{coh} < 10$ Mpc; $B = B_{RMS} \times \sqrt{I_{coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with an isotropic contribution from background sources


R. Alves Batista, R. M. de Almeida, B. Lago, K. Kotera, JCAP 01 (2019) 002

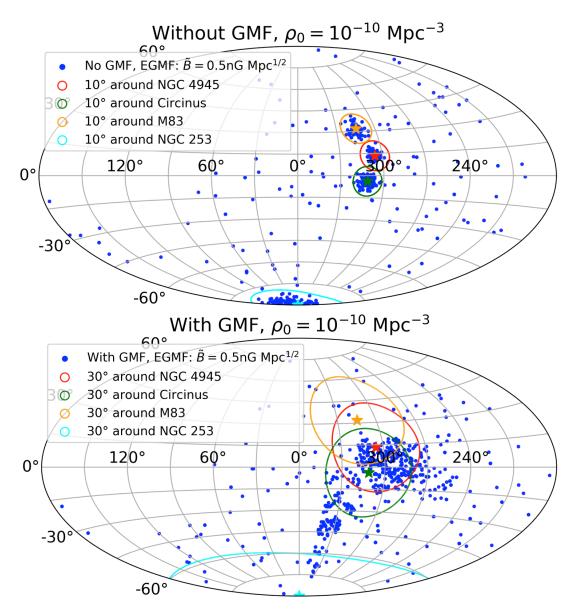
UHECR spectrum and composition

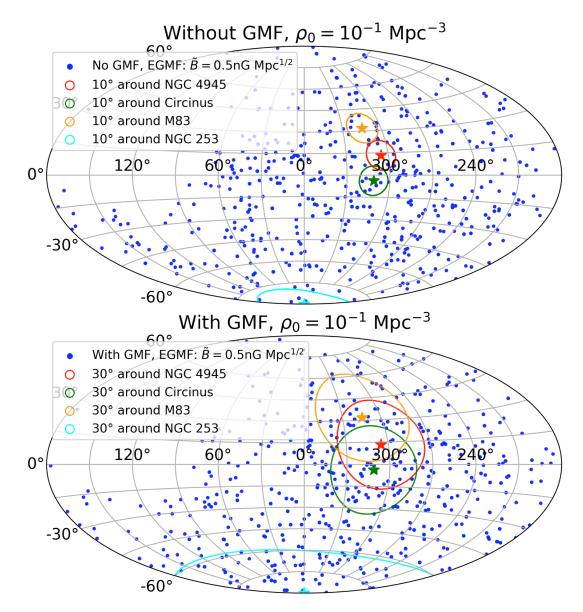
AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732

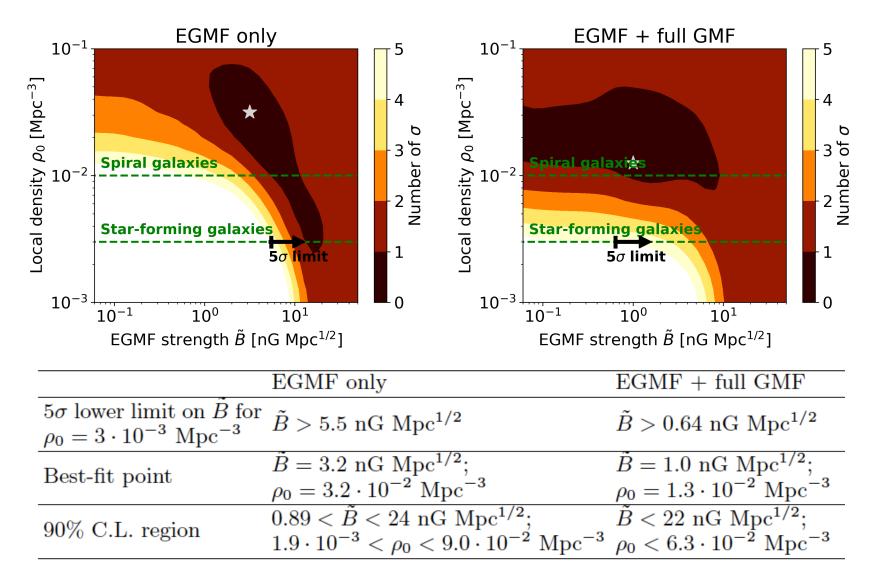
- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{\rm RMS} < 10$ nG, $0.2 < I_{\rm coh} < 10$ Mpc; $B = B_{\rm RMS} \times \sqrt{I_{\rm coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with an isotropic contribution from background sources


DESY. UHECRs from star-forming galaxies constrain the EGMF strength

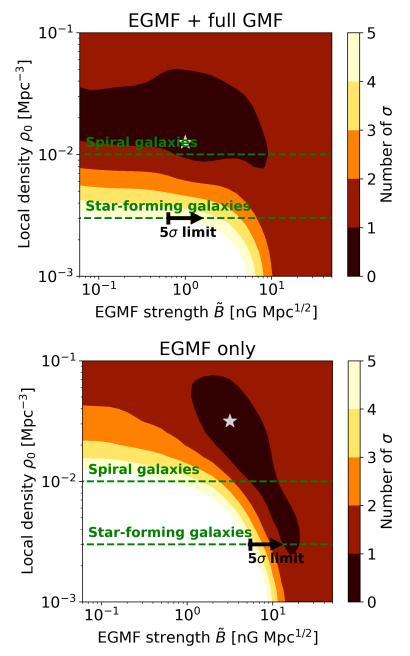
Source density


AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732


- Simulate UHECR sky maps for specific EGMF and GMF setups and local source densities ρ_0
- Check if these sky maps give θ and f_{aniso} values compatible with what Auger found
- Focus on 4 most important sources
- UHECR source spectra and composition from fits to spectrum and composition of Auger
- Simulate deflections from catalogue sources in EGMF
 - random Kolmogorov fields; $0.1 < B_{RMS} < 10 nG$, $0.2 < I_{coh} < 10 Mpc$; $B = B_{RMS} \times \sqrt{I_{coh}}$
- Add deflections from GMF, JF12 model
- Combine catalogue sources with an isotropic contribution from background sources


DESY. UHECRs from star-forming galaxies constrain the EGMF strength

Example sky maps

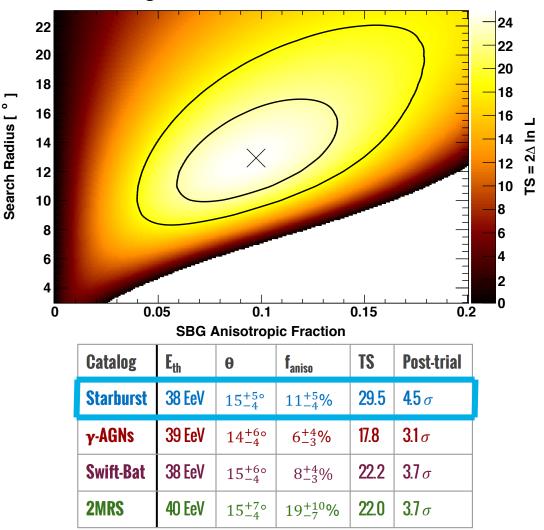


Preliminary results from scanning over ρ_0 and **B**

Conclusions

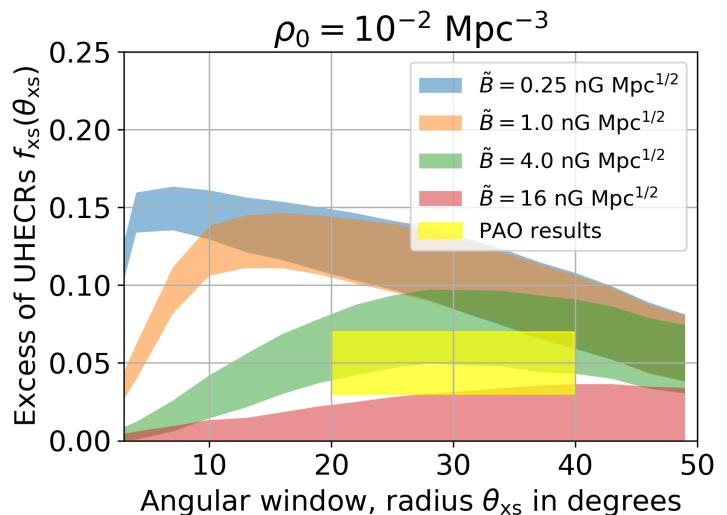
- Main assumption: overdensities in UHECR sky maps by Auger are produced by local star-forming galaxies
- If true, and the background UHECRs come from the same source class, a 5σ lower limit on the EGMF is obtained: *B* > 0.64 nG Mpc^{1/2}
- Allowing for the full range of ρ_0 :
 - Anti-correlation between source density and EGMF: isotropization by strong magnetic fields or large source densities
 - Too strong isotropization destroys observed correlations:
 - 90% C.L. upper limits: B < 24 nG Mpc^{1/2}; ρ₀ < 0.09 Mpc⁻³
 - Best-fit point for a source density close to, or even denser than, that of spiral galaxies

Backup slides

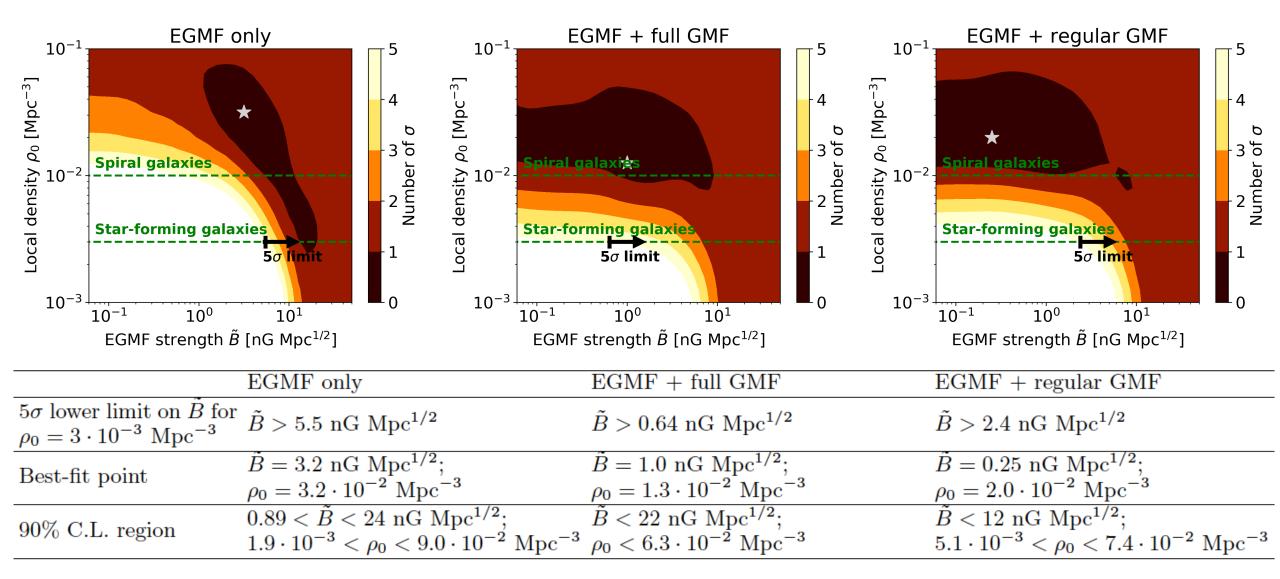

The analysis performed by Auger

Pierre Auger Collaboration, Astrophys. J. Lett. 853 (2018) 2

Pierre Auger Collaboration, PoS ICRC2019 206

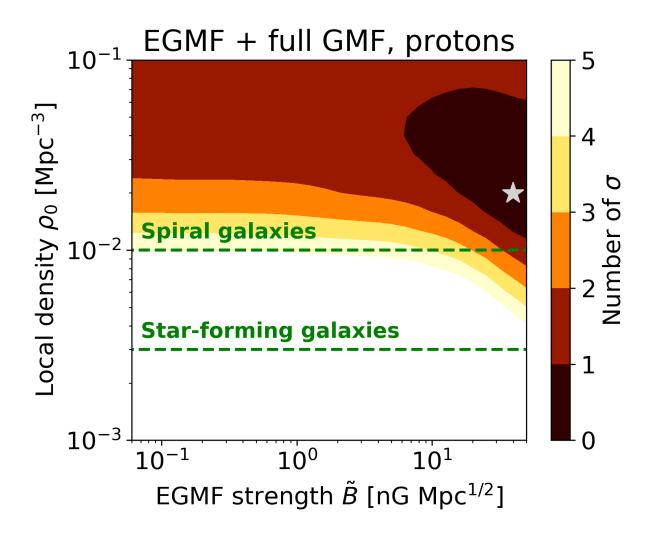

- Catalogue of 32 nearby star-forming galaxies
- Probability density maps, 2 components:
 - Isotropic component (equal probability everywhere)
 - Anisotropic component from the star-forming galaxies
- Anisotropic component:
 - Fisher distribution centred on the source coordinates (width θ)
 - Source flux proportional to radio emission + attenuation factor from UHECR energy losses
- Ratio between isotropic and anisotropic component: faniso
- Maximum-likelihood analysis:
 - Location of UHECR events × probability density map
 - Compared with isotropic probability density map

Starburst galaxies - E > 39 EeV



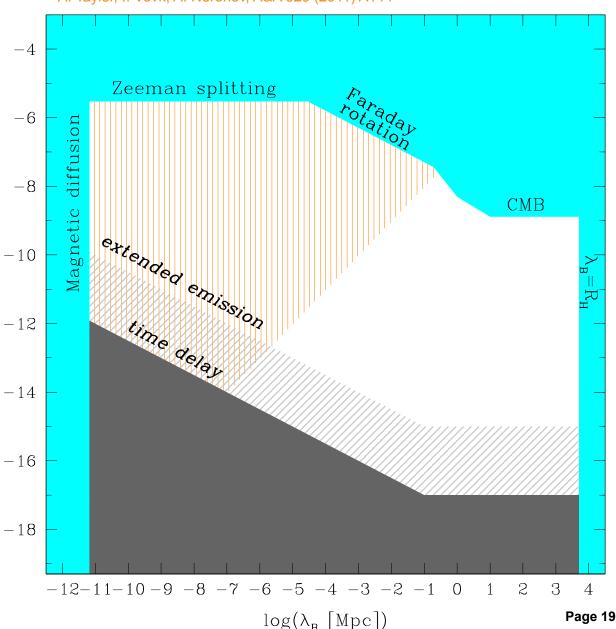
Compare with Auger results

- For each simulated sky map we produce with our method we determine the optimal angular window θ_{xs} and maximum excess f_{xs} of UHECRs
- Compare with results of Auger analysis
- Scan over B and ρ_0
- 3 different scenarios:
 - EGMF only
 - EGMF + full GMF
 - EGMF + regular GMF



Preliminary results from scanning over ρ_0 and **B**

Pure-proton scenario


- Extreme scenario with minimized deflections
- Requires very large local density ρ_0
- Not possible to reproduce Auger results for a local density of star-forming galaxies, for the values of *B* we considered

EGMF limits

AvV, A. Palladino, A. Taylor and W. Winter, arXiv:2104.05732

- Upper limits on EGMF strength from Faraday rotation, CMB anisotropy, Zeeman splitting
- Lower limits on EGMF from simultaneous GeV-TeV observations of blazars
- Our result: If overdensities in UHECR sky maps by Auger are produced by local star-forming galaxies, and the background UHECRs come
 from the same source class: *B* > 0.64 nG
 Mpc^{1/2}
- However, this is for the EGMF between local galaxies (<5 Mpc) and the Milky Way, not necessarily comparable with general limits on EGMFs in intergalactic voids

A. Taylor, I. Vovk, A. Neronov, A&A 529 (2011) A144

Contact

DESY. Deutsches	
Elektronen-Synchrotron	

www.desy.de

Arjen van Vliet THAT – NEUCOS arjen.van.vliet@desy.de +49 33762 7-7381