CR/Propa

An open-source astroparticle propagation framework from TeV to ZeV energies

Arjen van Vliet Zeuthen, 15.03.2019

Image by NASA

Horizon 2020 European Union funding for Research & Innovation

Image by J. Dubinski (U. of Toronto)

mage by ESO

Outline

CRPropa 3.2 - Overview

- Purpose
- Includes
- External models provided

Modular code structure

Extragalactic cosmic rays

- 1D, 3D and 4D
- EGMF and LSS
- Interactions
- GMF lensing
- Targeting
- Secondary particles

Galactic cosmic rays

- Single-particle propagation
- Diffusion

Electromagnetic cascades

Diffusive shock acceleration

• 1st and 2nd order

Example: Cosmogenic neutrinos

Example: UHECRs from radio galaxies

UHECR propagation:

- Creation at sources
- Deflections by magnetic fields
- Interactions with CMB and EBL

CR

EGMF

SIMIS

CMB

EBL

- Nuclear decay
- Secondary particles
- Detection at Earth

CRPropa 3.2 - Overview

R. Alves Batista, J. Becker Tjus, A. Dundovic, M. Erdmann, C. Heiter, K.-H. Kampert, L. Merten, G. Müller, A. Saveliev, G. Sigl, A. van Vliet, D. Walz and T. Winchen, in preparation

Open-source astroparticle simulation framework from TeV to ZeV energies for:

- Extragalactic propagation
- Galactic propagation
- Acceleration (new in 3.2)
- of
- Cosmic rays
- Electromagnetic cascades ($E \ge \text{GeV}$)
- Neutrinos

crpropa.desy.de

CRPropa 3.2 - Overview

R. Alves Batista, J. Becker Tjus, A. Dundovic, M. Erdmann, C. Heiter, K.-H. Kampert, L. Merten, G. Müller, A. Saveliev, G. Sigl, A. van Vliet, D. Walz and T. Winchen, in preparation

Open-source astroparticle simulation framework from TeV to ZeV energies including:

- All relevant interactions for:
 - Nuclei
 - Electromagnetic cascades
- Deflections in magnetic fields
- Redshift evolution
- Adiabatic cooling

crpropa.desy.de

CRPropa 3.2 - Overview

R. Alves Batista, J. Becker Tjus, A. Dundovic, M. Erdmann, C. Heiter, K.-H. Kampert, L. Merten, G. Müller, A. Saveliev, G. Sigl, A. van Vliet, D. Walz and T. Winchen, in preparation

Open-source astroparticle simulation framework from TeV to ZeV energies, with models provided for:

- Galactic magnetic field (GMF)
 - Jansson and Farrar (Astrophys. J. 761 (2012) L11)
 - Pshirkov (Astrophys. J. 738 (2011) 192)
- Extragalactic magnetic field (EGMF) and large-scale structure (LSS) density field
 - CLUES (Mon. Not. Roy. Astron. Soc. 475 (2018) 2519)
 - Dolag *et al*. (JCAP 01 (2005) 009)
 - Sigl *et al*. (Phys. Rev. D 70 (2004) 043007)
- Extragalactic background light (EBL)
 - 8 different options, see:

crpropa.desy.de

Modular code structure

- Flexible simulation setup
- Pick the modules you need
- Add your own modules
- Test specific modules
- Adjust modules
- Multipurpose simulation
 framework

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

K.-H. Kampert, J. Kulbartz, L. Maccione, N. Nierstenhoefer, P. Schiffer, G. Sigl, A. van Vliet, Astropart. Phys. 42 (2013) 41

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

- 1D, 3D and 4D simulation environments
- Deflections in EGMF
- Sources following the LSS density field
- Energy-loss interactions with CMB and EBL:
 - Pair production
 - Photodisintegration
 - Photo-meson production
- Expansion of the universe
- Nuclear decay
- Deflections in GMF with lensing technique
- Targeting method with learning technique for optimized emission direction (new in 3.2)

- Creation and propagation of secondary particles:
 - Secondary nuclei
 - Photons, electrons and positrons
 - Neutrinos

Galactic cosmic rays

Galactic cosmic rays

Single-particle approach

Solve equation of motion

- 5 protons
- $E = 10^{18} \text{ eV}$
- Isotropic emission
- Source at Galactic center
- Pshirkov '11 GMF

Galactic cosmic rays

Multi-particle diffusion approach (new in 3.2)

Solve transport equation

- Anisotropic diffusion
- Advection
- Adiabatic cooling
- Momentum diffusion

Example

- Cosmic-ray density
- In Galactic plane
- Homogeneous injection
- Jansson and Farrar '12 GMF

DESY. | CRPropa 3.2 | Arjen van Vliet, 15.03.2019

Electromagnetic cascades

Electromagnetic cascades

Propagation methods

- DINT
- EleCa
- Propagation using CRPropa (new in 3.2)
 - Full modular 3D treatment of EM cascades

Interactions

- Pair production
- Double pair production
- Triplet pair production
- Inverse Compton scattering

New in 3.2: additional photon production channels

Cosmogenic photons using DINT

Electromagnetic cascades

Propagation methods

- DINT
- EleCa
- Propagation using CRPropa (new in 3.2)
 - Full modular 3D treatment of EM cascades

Interactions

- Pair production
- Double pair production
- Triplet pair production
- Inverse Compton scattering

New in 3.2: additional photon production channels

DESY. | CRPropa 3.2 | Arjen van Vliet, 15.03.2019

Page 22

Diffusive shock acceleration (new in 3.2)

Diffusive shock acceleration

First order

Acceleration at directed scattering centres

Extragalactic CRs example: Cosmogenic neutrinos

Combined fit

- Continuous source distribution of identical sources
- Composition at the sources:
 Intermediate to heavy,
 no protons at highest *E*
- Spectrum at the sources:
 - Power law with rigidity-dependent cut-off
- $\gamma < 0.5$, hard spectral index
- $R_{\text{max}} < 4 \text{ EV}$, low max. rigidity

Combined fit

- Continuous source distribution of identical sources
- Composition at the sources:
 Intermediate to heavy,
 no protons at highest *E*
- Spectrum at the sources:
 - Power law with rigidity-dependent cut-off
- $\gamma < 0.5$, hard spectral index
- R_{max} < 4 EV, low max. rigidity

J. Heinze et al., arXiv:1901.03338, accepted in ApJ

Combined fit

- Continuous source distribution of identical sources
- Composition at the sources:

Intermediate to heavy,

no protons at highest E

• Spectrum at the sources:

Power law with rigidity-dependent cut-off

- $\gamma < 0.5$, hard spectral index
- $R_{\text{max}} < 4 \text{ EV}$, low max. rigidity

J. Heinze et al., arXiv:1901.03338, accepted in ApJ

Neutrinos at ~1 EeV

- Cosmogenic neutrino flux depends on:
 - Spectral index *α*
 - Max. rigidity R_{max}
 - EBL model
 - Composition (proton fraction f)
 - Source evolution
- Sweet spot at ~1 EeV, only depends on:
 - Composition (proton fraction)
 - Source evolution $(z_{max} = 4)$ $SE = \begin{cases} (1+z)^m & \text{for } m \le 0\\ (1+z)^m & \text{for } m > 0 \text{ and } z < 1.5\\ 2.5^m & \text{for } m > 0 \text{ and } z \ge 1.5 \end{cases}$

Neutrinos at ~1 EeV

- Cosmogenic neutrino flux depends on:
 - Spectral index *α*
 - Max. rigidity R_{max}
 - EBL model
 - Composition (proton fraction f)
 - Source evolution
- Sweet spot at ~1 EeV, only depends on:
 - Composition (proton fraction)
 - Source evolution $(z_{max} = 4)$ $SE = \begin{cases} (1+z)^m & \text{for } m \le 0\\ (1+z)^m & \text{for } m > 0 \text{ and } z < 1.5\\ 2.5^m & \text{for } m > 0 \text{ and } z \ge 1.5 \end{cases}$

Neutrinos from subdominant proton component

- Cosmogenic neutrino flux for:
 - 1.0 < *α* < 2.5
 - $10^{1.6} < E_{\text{max}} < 10^3 \text{ EeV}$
 - EBL model: Franceschini '08
 - proton fraction f < 0.2 at $10^{1.6}$ EeV

Current sensitivity

- Single-flavour neutrino flux at ~1 EeV
- Auger and IceCube are both close to ~10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹
- Top-right part of parameter space already constrained
- Combination of a large proton fraction and strong source evolution ruled out

A. van Vliet, J. R. Hörandel and R. Alves Batista, arXiv:1901.01899, subm. to PRL

Current sensitivity

- Single-flavour neutrino flux at ~1 EeV
- Auger and IceCube are both close to ~10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹
- Top-right part of parameter space already constrained
- Combination of a large proton fraction and strong source evolution ruled out

A. van Vliet, J. R. Hörandel and R. Alves Batista, arXiv:1901.01899, subm. to PRL

Upcoming experiments

Page 35

Upcoming experiments

Conclusions

- Neutrino limits at ~1 EeV are able to constrain the proton fraction and source evolution of UHECR sources
- The combination of a large proton fraction and a strong source evolution is already ruled out
- Strong potential for upcoming experiments, to detect cosmogenic neutrinos and to further constrain the parameter space
- Determine proton fraction in UHECRs independent of hadronic interaction models

Extragalactic CRs example: UHECRs from radio galaxies

B. Eichmann, J. Rachen, L. Merten, A. van Vliet and J. Becker Tjus, JCAP 1802 (2018) 036

Radio galaxies (radio-loud AGN)

Potential sources of UHECRs

- FR-II: very powerful but very rare distance > 100 Mpc brightest: Cygnus A (~250 Mpc)
- <u>FR-I</u>: less powerful but more common closest: Centaurus A at ~3 Mpc
- <u>Catalogue</u>: Van Velzen *et al.* 2012
 3D position + radio luminosity

Environment

- Interactions with CMB and EBL
- EGMF: Dolag et al. 2005, constrained LSS simulations up to ~120 Mpc from Earth
- **GMF:** Jansson & Farrar 2012 •
- **Source distribution:**
 - Local RGs, *D* < 120 Mpc, 3D ٠
 - Non-local RGs, *D* > 120 Mpc, 1D ٠

5 kpc

O= Sun

Source setup

- Cosmic-ray power: Q_{cr}
- Max. rigidity: $R_{\text{max}} = E_{\text{max}}/Ze$
- Luminosity $L \rightarrow jet$ power Q_{jet}
 - → Q_{cr} and R_{max} for each source $Q_{cr} \propto g_{cr} L_{1.1}^{6/7}$ $R_{max} \propto g_{acc} \sqrt{Q_{cr}}$ Initial composition:
 - solar abundance × Z^q
- Spectral index: a

•

Local sources

- Single-source spectra after propagation
- All parameters at maximum (no fit)
- Important local sources:
 - Cen A
 - Fornax A
 - M87

Powerful Cen A + Cyg A

- Fit to spectrum and composition (3 hadronic interaction models) •
- Spectral index >1.8 •
- Composition close to solar abundance •

 $g_{
m cr}^{
m CygA}$

 $g_{\rm acc}$

 $g_{
m cr}^{
m CenA}$

 \bar{g}_{cr}

a

 $g_{
m acc}^{
m CygA}$

 χ^2

 \boldsymbol{q}

Arrival directions

Angular power spectrum

$$C_{l} = \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^{2}$$

- Auger dipole reproduced
- Not fitted!

Conclusions

- Spectrum, composition and angular power spectrum can be explained by powerful Cyg A and Cen A
 - Cyg A: light composition, dominant for *E*<60 EeV
 - Cen A: heavy composition, dominant for *E*>60 EeV
- If best-fit scenario is correct:
 - Spectral index ~1.8: much softer than what many other papers find as best fit
 - Local UHECR flux ~10x higher than average in universe: predicted cosmogenic neutrino and photon fluxes overestimated

Summary

- CRPropa: Multi-purpose open-source astroparticle simulation framework
- Available from: <u>crpropa.desy.de</u>
- CRPropa 3.2 under development at the moment with new major features including:
 - Diffusion for Galactic cosmic rays
 - Targeting method for speedup of extragalactic propagation
 - Improved electromagnetic cascade simulations
 - Acceleration at the sources
- Example applications:
 - Strong potential for cosmogenic neutrino measurements at ~1 EeV
 - Radio galaxies viable as sources of UHECRs

Contact

DESY. Deutsches	
Elektronen-Synchrotron	

www.desy.de

Arjen van Vliet THAT – NEUCOS arjen.van.vliet@desy.de +49 33762 7-7381

Backup slides

Software design

Simulation Framework **CR**/Propa

Rafael Alves Batista^{a,b}, Julia Becker Tjus^c, Andrej Dundovic^a, Martin Erdmann^d, Christopher Heiter^d, Karl-Heinz Kampert^e, Daniel Kuempel^d, Lukas Merten^c, Gero Müller^d, Günter Sigl^a, Arjen van Vliet^{a,f}, David Walz^d, Tobias Winchen^{d,e,g}, Marcus Wirtz^d

RWTH Aachen University⁴, Ruhr Universität Bochum^c, Vrije Universiteit Brussels⁹, University Hamburg^a, Radboud University Nijmegen^r, University of Sao Paolo^b, Bergische Universität Wuppertal^e

Toolbox for Simulations of UHECR Propagation

Download:

http://crpropa.desy.de

Online demo in your Browser: http://vispa.physik.rwth-aachen.de

Example: Steering / Simulation Setup Code Example in Python, but C++ would also be possible

1 from crpropa import * 2 sim = ModuleList()	1. Import + define empty simulation
<pre>4 sim.add(SimplePropagation(1*kpc, 10*Mpc)) 5 6 sim.add(Redshift()) 7 sim.add(PhotoPionProduction(CMB)) 8 sim.add(PhotoPionProduction(IRB)) 9 sim.add(PhotoDisintegration(CMB)) more interactions 17 obs = Observer() 18 obs.add(ObserverPoint()) 19 output = TextOutput('events.txt', Output.Event1D) 20 obs.onDetection(output) 21 sim.add(obs) </pre>	2. Add modules
<pre>23 source = Source() 24 source.add(SourceUniform1D(1 * Mpc, 1000 * Mpc)) 25 source.add(SourceRedshift1D()) 26 27 composition = SourceComposition(1 * EeV, 100 * EeV, -1) 28 composition.add(1, 1, 1) # H 29 composition.add(4, 2, 1) # He-4 30 composition.add(14, 7, 1) # N-14 31 composition.add(56, 26, 1) # Fe-56 32 source.add(composition) 20 20 20 20 20 20 20 20 20 20 20 20 20</pre>	3. Define sources
34 sim.setShowProgress(True) 35 sim.run(source, 200, True) 36	4. Execute modules on output of sources

Overview Object Oriented Design

New objects can be coded in C++ or Python (Interface generated using SWIG) by the user Without recompiling CRPropa core.

4

Candidate: Stores Data on Particle

Modules: Modify Candidate

Prototype Propagator

1. Save current state:
PreviousState = CurrentState

- 2. Make step
 - CurrentStep=NextStep
 - Update position according to CurrentStep
- 3. Set NextStep to maximum

exit module

Prototype Interaction

- 1.If not applicable: Do nothing
- 2.Calculate probability to interact in current step according to current candidate state

3.If no interaction:

- Limit next step to small fraction of m. free path
- exit module

If interaction:

- Modify current particle
- add secondaries
- Repeat from 2

- Candidate has individual step size
- Every module limits the stepsize to a small fraction of its mean free path
 - Order does not matter
 - Modules are independent, no communication required
- Modularity in interactions is paid for by random numbers as need to be generated in every cycle by every module (CRPropa not limited by RNG)

Module Features are Separate Objects

E.g. Observer

Example: Output particles crossing different planes

```
2 obs = Observer()
3 obs.add( ObserverSurface( Plane( Vector3d(0, 0, 0), Vector3(0,0,1) )))
4 obs.add( ObserverSurface( Plane( Vector3d(0, 0, 100 * meter), Vector3(0,0,1) )))
5 obs.add( ObserverSurface( Plane( Vector3d(0, 0, 200 * meter), Vector3(0,0,1) )))
6 obs.onDetection( TextOutput('output1.txt') )
7
```

Does this Scale for Many Particles?

How did we get There?

- Several versions of CRPropa
- Previous modular codes →PAX, PXL, RDAS

Software development philosophy:

- KISS: Keep it simple, not stupid
- YAGNI: You ain't gonna need it
- Refactor often and early
- Dev. Substeps:
 - →Make it work
 - →Make it right
 - →Make it nice
 - →Make it fast (if needed)

- Code review (of substantial changes) git + pull requests (github)
- Unit Tests + Continuous Integration gtest + travis
- Minimize dependencies:
 - →User should not need to compile dependencies
 - Dependencies should be standard / trivial available on supported platforms (Linux + Mac)
 - » Cmake
 - » Python
 - » Swig
 - » hdf5
 - or shipped in static version.
 - » Healpix subset, eigen, kiss, (tinyxml, thread), hepid
 - Boost (and ROOT) are known to cause problems

Conclusion

- CRPropa3 highly modular code design
 - User friendly (all dependencies except python + swig) shipped + compiles using standardized tool chain (cmake)
 - →Highly modular
 - Easily extendable (C++/python modules and features without recompiling)
 - \rightarrow Scales linearly to high particle numbers
 - →Webpage / Code / Issue-tracker / Examples / Documentation / ...
 - https://crpropa.desy.de/
 - https://github.com/CRPropa/CRPropa3
- Several approaches probably transferable to Next Generation CORSIKA

Diffusive shock acceleration (new in 3.2)

Simulation setup

DESY.

Simulation scheme

DESY.

Extragalactic CRs example: Cosmogenic neutrinos

Proton vs. Iron

- *R*_{cut} = 200 EV
- *α* = 2.5
- Comoving source evolution
- Neutrino flux strongly reduced in the case of iron primarie

Iron specifics

- *R*_{cut} = 200 EV
- $\alpha = 2.5$
- Comoving source evolution
- Most v's from secondary protons for $E > 10^8$ GeV

Reference scenario

A. van Vliet, J. R. Hörandel and R. Alves Batista, *Cosmogenic gamma-rays and neutrinos constrain UHECR source models*, PoS (ICRC2017) 562 A. van Vliet, *Cosmogenic photons strongly constrain UHECR source models*, EPJ Web Conf. 135 (2017) 03001

- 1D simulation including neutrinos
- Homogeneous distribution of identical sources
- Initial CR type:
- Injection spectrum:
- Cut-off rigidity:
- Injection index:
- Source evolution:
- EBL:

protons $\frac{dN}{dE} \propto E^{-\alpha} \exp(-E / ZR_{cut})$ $R_{cut} = 200 \text{ EV}$ $\alpha = 2.5$ comoving (no evolution)

Gilmore et al. 2012

Reference model

- Protons
- *R*_{cut} = 200 EV
- $\alpha = 2.5$

DESY.

• comoving

Source evolution

- Protons
- *R*_{cut} = 200 EV
- $\alpha = 2.5$
- evolution multiplied by $(1+z)^m$, for $-6 \le m \le 6$
- *m* = 0: BL Lacs, *m* = -6: HSP BL Lacs
- v's strongly affected

Source ev. models

- Protons
- *R*_{cut} = 200 EV
- $\alpha = 2.5$
- GRBs, AGNs, SFR
- v's strongly affected
- Constrained by neutrino limits

Max. rigidity

- Protons
- $50 \le R_{\rm cut} \le 800 \, {\rm EV}$
- $\alpha = 2.5$
- Comoving
- v's only affected for $E > 10^8 \text{ GeV}$

Spectral index

- Protons
- *R*_{cut} = 200 EV
- $\alpha = 2.5$
- Comoving
- v's affected similarly as CRs

EBL

- Protons
- *R*_{cut} = 200 EV
- $2.0 \le \alpha \le 2.9$
- Comoving
- EBL: Gilmore 2012, Stecker 2016 upper and lower
- v's significantly affected only for $E < 10^8$ GeV

Extragalactic CRs example: UHECRs from radio galaxies

B. Eichmann, J. Rachen, L. Merten, A. van Vliet and J. Becker Tjus, JCAP 1802 (2018) 036
Arrival Directions

Angular power spectrum
 1 ____

$$C_{l} = \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^{2}$$

- Dipole too large
- Fit only for *E* > 5 EeV
- Low *E* contribution could reduce difference

Only Cyg A Special

• Not possible to get a good fit

	a	$ar{g}_{ ext{cr}}$	$g_{ m cr}^{ m CygA}$	$ar{g}_{ m acc}$	$g_{ m acc}^{ m CygA}$	q	χ^2
EPOS-LHC	1.7	1.94	22.17	0.6	0.11	2	5.4
QGSJetII-04	1.76	2.23	32.60	0.6	0.090	1.84	5.6
Sibyll2.1	1.83	2.29	42.51	0.6	0.085	1.97	5.7

Powerful M87, Fornax A and Cyg A

Only composition M87 & Fornax A enhanced

	a	$ar{g}_{ ext{cr}}$	$g_{ m cr}^{ m M/F}$	$g_{ m cr}^{ m CygA}$	$g_{ m acc}$	$g_{ m acc}^{ m CygA}$	q	χ^2
EPOS-LHC	1.71	12.83	50	32.04	0.100	0.065	2	4.8
QGSJetII-04	1.76	9.83	50	41.61	0.133	0.061	1.87	2.8
Sibyll2.1	1.71	10.02	48.91	34.05	0.121	0.064	1.87	3.1

Powerful M87, Fornax A and Cyg A

Composition enhanced for all sources except Cygnus A

	\boldsymbol{a}	$ar{g}_{ ext{cr}}$	$g_{ m cr}^{ m M/F}$	$g_{ m cr}^{ m CygA}$	$g_{ m acc}$	$g_{ m acc}^{ m CygA}$	q	χ^2
EPOS-LHC	1.71	2.17	39.94	27.70	0.123	0.078	1.99	2.7
QGSJetII-04	1.80	2.11	45.48	44.20	0.170	0.065	1.84	2.4
Sibyll2.1	1.71	2.14	44.96	31.50	0.147	0.072	1.78	2.4

Powerful Cen A + Cyg A

Composition enhanced for all sources except Cygnus A

	a	$ar{g}_{ ext{cr}}$	$g_{ m cr}^{ m CenA}$	$g_{ m cr}^{ m CygA}$	$g_{ m acc}$	$g_{ m acc}^{ m CygA}$	q	χ^2
EPOS-LHC	1.77	1.02	46.73	30.48	0.117	0.068	1.77	1.3
$\mathbf{QGSJetII-04}$	1.82	1.06	27.42	49.34	0.211	0.057	1.81	1.8
Sibyll2.1	1.83	1	38.77	50	0.159	0.057	1.8	1.6

Local Sources

- Catalogue: Van Velzen *et al.* for *D* < 120 Mpc
- Covers 88% of the sky
- Complete for bright sources
- Missing low-luminous distant RGs due to flux limit
- Compensated for by adding sources following the LSS
- Luminous nearby sources treated separately:

Cen A, M87, Fornax A

Non-local Sources

- 1D simulations following continuous source function for radio galaxies
- Including cosmological evolution
- Arrival directions assumed isotropic
- Special case: Cygnus A at 255 Mpc, treated separately

Fit parameters

- Spectral index: $1.7 \le a \le 2.2$
- Cosmic-ray load: $1 \le g_{CR} \le 50$
- Acceleration efficiency: $0.01 \le g_{acc} \le 0.5$
- Composition parameter: $0 \le q \le 2$ (solar abundance $\times Z_i^q$)
- For Cen A, M87, Fornax A and Cygnus A can get separate values for g_{CR} and g_{acc}
- 6/7 free parameters in the fit for each scenario
- Fit spectrum and composition