This is Info file elisp, produced by Makeinfo-1.55 from the input file elisp.texi. This version is the edition 2.3 of the GNU Emacs Lisp Reference Manual. It corresponds to Emacs Version 19.23. Published by the Free Software Foundation 675 Massachusetts Avenue Cambridge, MA 02139 USA Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Foundation. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled "GNU General Public License" is included exactly as in the original, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that the section entitled "GNU General Public License" may be included in a translation approved by the Free Software Foundation instead of in the original English.  File: elisp, Node: Special Forms, Next: Autoloading, Prev: Macro Forms, Up: Forms Special Forms ------------- A "special form" is a primitive function specially marked so that its arguments are not all evaluated. Most special forms define control structures or perform variable bindings--things which functions cannot do. Each special form has its own rules for which arguments are evaluated and which are used without evaluation. Whether a particular argument is evaluated may depend on the results of evaluating other arguments. Here is a list, in alphabetical order, of all of the special forms in Emacs Lisp with a reference to where each is described. `and' *note Combining Conditions::. `catch' *note Catch and Throw::. `cond' *note Conditionals::. `condition-case' *note Handling Errors::. `defconst' *note Defining Variables::. `defmacro' *note Defining Macros::. `defun' *note Defining Functions::. `defvar' *note Defining Variables::. `function' *note Anonymous Functions::. `if' *note Conditionals::. `interactive' *note Interactive Call::. `let' `let*' *note Local Variables::. `or' *note Combining Conditions::. `prog1' `prog2' `progn' *note Sequencing::. `quote' *note Quoting::. `save-excursion' *note Excursions::. `save-restriction' *note Narrowing::. `save-window-excursion' *note Window Configurations::. `setq' *note Setting Variables::. `setq-default' *note Creating Buffer-Local::. `track-mouse' *note Mouse Tracking::. `unwind-protect' *note Nonlocal Exits::. `while' *note Iteration::. `with-output-to-temp-buffer' *note Temporary Displays::. Common Lisp note: Here are some comparisons of special forms in GNU Emacs Lisp and Common Lisp. `setq', `if', and `catch' are special forms in both Emacs Lisp and Common Lisp. `defun' is a special form in Emacs Lisp, but a macro in Common Lisp. `save-excursion' is a special form in Emacs Lisp, but doesn't exist in Common Lisp. `throw' is a special form in Common Lisp (because it must be able to throw multiple values), but it is a function in Emacs Lisp (which doesn't have multiple values).  File: elisp, Node: Autoloading, Prev: Special Forms, Up: Forms Autoloading ----------- The "autoload" feature allows you to call a function or macro whose function definition has not yet been loaded into Emacs. It specifies which file contains the definition. When an autoload object appears as a symbol's function definition, calling that symbol as a function automatically loads the specified file; then it calls the real definition loaded from that file. *Note Autoload::.  File: elisp, Node: Quoting, Prev: Forms, Up: Evaluation Quoting ======= The special form `quote' returns its single argument "unchanged". - Special Form: quote OBJECT This special form returns OBJECT, without evaluating it. This provides a way to include constant symbols and lists, which are not self-evaluating objects, in a program. (It is not necessary to quote self-evaluating objects such as numbers, strings, and vectors.) Because `quote' is used so often in programs, Lisp provides a convenient read syntax for it. An apostrophe character (`'') followed by a Lisp object (in read syntax) expands to a list whose first element is `quote', and whose second element is the object. Thus, the read syntax `'x' is an abbreviation for `(quote x)'. Here are some examples of expressions that use `quote': (quote (+ 1 2)) => (+ 1 2) (quote foo) => foo 'foo => foo ''foo => (quote foo) '(quote foo) => (quote foo) ['foo] => [(quote foo)] Other quoting constructs include `function' (*note Anonymous Functions::.), which causes an anonymous lambda expression written in Lisp to be compiled, and ``' (*note Backquote::.), which is used to quote only part of a list, while computing and substituting other parts.  File: elisp, Node: Control Structures, Next: Variables, Prev: Evaluation, Up: Top Control Structures ****************** A Lisp program consists of expressions or "forms" (*note Forms::.). We control the order of execution of the forms by enclosing them in "control structures". Control structures are special forms which control when, whether, or how many times to execute the forms they contain. The simplest order of execution is sequential execution: first form A, then form B, and so on. This is what happens when you write several forms in succession in the body of a function, or at top level in a file of Lisp code--the forms are executed in the order written. We call this "textual order". For example, if a function body consists of two forms A and B, evaluation of the function evaluates first A and then B, and the function's value is the value of B. Explicit control structures make possible an order of execution other than sequential. Emacs Lisp provides several kinds of control structure, including other varieties of sequencing, conditionals, iteration, and (controlled) jumps--all discussed below. The built-in control structures are special forms since their subforms are not necessarily evaluated or not evaluated sequentially. You can use macros to define your own control structure constructs (*note Macros::.). * Menu: * Sequencing:: Evaluation in textual order. * Conditionals:: `if', `cond'. * Combining Conditions:: `and', `or', `not'. * Iteration:: `while' loops. * Nonlocal Exits:: Jumping out of a sequence.  File: elisp, Node: Sequencing, Next: Conditionals, Up: Control Structures Sequencing ========== Evaluating forms in the order they appear is the most common way control passes from one form to another. In some contexts, such as in a function body, this happens automatically. Elsewhere you must use a control structure construct to do this: `progn', the simplest control construct of Lisp. A `progn' special form looks like this: (progn A B C ...) and it says to execute the forms A, B, C and so on, in that order. These forms are called the body of the `progn' form. The value of the last form in the body becomes the value of the entire `progn'. In the early days of Lisp, `progn' was the only way to execute two or more forms in succession and use the value of the last of them. But programmers found they often needed to use a `progn' in the body of a function, where (at that time) only one form was allowed. So the body of a function was made into an "implicit `progn'": several forms are allowed just as in the body of an actual `progn'. Many other control structures likewise contain an implicit `progn'. As a result, `progn' is not used as often as it used to be. It is needed now most often inside an `unwind-protect', `and', `or', or in the THEN-part of an `if'. - Special Form: progn FORMS... This special form evaluates all of the FORMS, in textual order, returning the result of the final form. (progn (print "The first form") (print "The second form") (print "The third form")) -| "The first form" -| "The second form" -| "The third form" => "The third form" Two other control constructs likewise evaluate a series of forms but return a different value: - Special Form: prog1 FORM1 FORMS... This special form evaluates FORM1 and all of the FORMS, in textual order, returning the result of FORM1. (prog1 (print "The first form") (print "The second form") (print "The third form")) -| "The first form" -| "The second form" -| "The third form" => "The first form" Here is a way to remove the first element from a list in the variable `x', then return the value of that former element: (prog1 (car x) (setq x (cdr x))) - Special Form: prog2 FORM1 FORM2 FORMS... This special form evaluates FORM1, FORM2, and all of the following FORMS, in textual order, returning the result of FORM2. (prog2 (print "The first form") (print "The second form") (print "The third form")) -| "The first form" -| "The second form" -| "The third form" => "The second form"  File: elisp, Node: Conditionals, Next: Combining Conditions, Prev: Sequencing, Up: Control Structures Conditionals ============ Conditional control structures choose among alternatives. Emacs Lisp has two conditional forms: `if', which is much the same as in other languages, and `cond', which is a generalized case statement. - Special Form: if CONDITION THEN-FORM ELSE-FORMS... `if' chooses between the THEN-FORM and the ELSE-FORMS based on the value of CONDITION. If the evaluated CONDITION is non-`nil', THEN-FORM is evaluated and the result returned. Otherwise, the ELSE-FORMS are evaluated in textual order, and the value of the last one is returned. (The ELSE part of `if' is an example of an implicit `progn'. *Note Sequencing::.) If CONDITION has the value `nil', and no ELSE-FORMS are given, `if' returns `nil'. `if' is a special form because the branch that is not selected is never evaluated--it is ignored. Thus, in the example below, `true' is not printed because `print' is never called. (if nil (print 'true) 'very-false) => very-false - Special Form: cond CLAUSE... `cond' chooses among an arbitrary number of alternatives. Each CLAUSE in the `cond' must be a list. The CAR of this list is the CONDITION; the remaining elements, if any, the BODY-FORMS. Thus, a clause looks like this: (CONDITION BODY-FORMS...) `cond' tries the clauses in textual order, by evaluating the CONDITION of each clause. If the value of CONDITION is non-`nil', the clause "succeeds"; then `cond' evaluates its BODY-FORMS, and the value of the last of BODY-FORMS becomes the value of the `cond'. The remaining clauses are ignored. If the value of CONDITION is `nil', the clause "fails", so the `cond' moves on to the following clause, trying its CONDITION. If every CONDITION evaluates to `nil', so that every clause fails, `cond' returns `nil'. A clause may also look like this: (CONDITION) Then, if CONDITION is non-`nil' when tested, the value of CONDITION becomes the value of the `cond' form. The following example has four clauses, which test for the cases where the value of `x' is a number, string, buffer and symbol, respectively: (cond ((numberp x) x) ((stringp x) x) ((bufferp x) (setq temporary-hack x) ; multiple body-forms (buffer-name x)) ; in one clause ((symbolp x) (symbol-value x))) Often we want to execute the last clause whenever none of the previous clauses was successful. To do this, we use `t' as the CONDITION of the last clause, like this: `(t BODY-FORMS)'. The form `t' evaluates to `t', which is never `nil', so this clause never fails, provided the `cond' gets to it at all. For example, (cond ((eq a 'hack) 'foo) (t "default")) => "default" This expression is a `cond' which returns `foo' if the value of `a' is 1, and returns the string `"default"' otherwise. Any conditional construct can be expressed with `cond' or with `if'. Therefore, the choice between them is a matter of style. For example: (if A B C) == (cond (A B) (t C))  File: elisp, Node: Combining Conditions, Next: Iteration, Prev: Conditionals, Up: Control Structures Constructs for Combining Conditions =================================== This section describes three constructs that are often used together with `if' and `cond' to express complicated conditions. The constructs `and' and `or' can also be used individually as kinds of multiple conditional constructs. - Function: not CONDITION This function tests for the falsehood of CONDITION. It returns `t' if CONDITION is `nil', and `nil' otherwise. The function `not' is identical to `null', and we recommend using the name `null' if you are testing for an empty list. - Special Form: and CONDITIONS... The `and' special form tests whether all the CONDITIONS are true. It works by evaluating the CONDITIONS one by one in the order written. If any of the CONDITIONS evaluates to `nil', then the result of the `and' must be `nil' regardless of the remaining CONDITIONS; so `and' returns right away, ignoring the remaining CONDITIONS. If all the CONDITIONS turn out non-`nil', then the value of the last of them becomes the value of the `and' form. Here is an example. The first condition returns the integer 1, which is not `nil'. Similarly, the second condition returns the integer 2, which is not `nil'. The third condition is `nil', so the remaining condition is never evaluated. (and (print 1) (print 2) nil (print 3)) -| 1 -| 2 => nil Here is a more realistic example of using `and': (if (and (consp foo) (eq (car foo) 'x)) (message "foo is a list starting with x")) Note that `(car foo)' is not executed if `(consp foo)' returns `nil', thus avoiding an error. `and' can be expressed in terms of either `if' or `cond'. For example: (and ARG1 ARG2 ARG3) == (if ARG1 (if ARG2 ARG3)) == (cond (ARG1 (cond (ARG2 ARG3)))) - Special Form: or CONDITIONS... The `or' special form tests whether at least one of the CONDITIONS is true. It works by evaluating all the CONDITIONS one by one in the order written. If any of the CONDITIONS evaluates to a non-`nil' value, then the result of the `or' must be non-`nil'; so `or' returns right away, ignoring the remaining CONDITIONS. The value it returns is the non-`nil' value of the condition just evaluated. If all the CONDITIONS turn out `nil', then the `or' expression returns `nil'. For example, this expression tests whether `x' is either 0 or `nil': (or (eq x nil) (eq x 0)) Like the `and' construct, `or' can be written in terms of `cond'. For example: (or ARG1 ARG2 ARG3) == (cond (ARG1) (ARG2) (ARG3)) You could almost write `or' in terms of `if', but not quite: (if ARG1 ARG1 (if ARG2 ARG2 ARG3)) This is not completely equivalent because it can evaluate ARG1 or ARG2 twice. By contrast, `(or ARG1 ARG2 ARG3)' never evaluates any argument more than once.  File: elisp, Node: Iteration, Next: Nonlocal Exits, Prev: Combining Conditions, Up: Control Structures Iteration ========= Iteration means executing part of a program repetitively. For example, you might want to repeat some computation once for each element of a list, or once for each integer from 0 to N. You can do this in Emacs Lisp with the special form `while': - Special Form: while CONDITION FORMS... `while' first evaluates CONDITION. If the result is non-`nil', it evaluates FORMS in textual order. Then it reevaluates CONDITION, and if the result is non-`nil', it evaluates FORMS again. This process repeats until CONDITION evaluates to `nil'. There is no limit on the number of iterations that may occur. The loop will continue until either CONDITION evaluates to `nil' or until an error or `throw' jumps out of it (*note Nonlocal Exits::.). The value of a `while' form is always `nil'. (setq num 0) => 0 (while (< num 4) (princ (format "Iteration %d." num)) (setq num (1+ num))) -| Iteration 0. -| Iteration 1. -| Iteration 2. -| Iteration 3. => nil If you would like to execute something on each iteration before the end-test, put it together with the end-test in a `progn' as the first argument of `while', as shown here: (while (progn (forward-line 1) (not (looking-at "^$")))) This moves forward one line and continues moving by lines until it reaches an empty. It is unusual in that the `while' has no body, just the end test (which also does the real work of moving point).  File: elisp, Node: Nonlocal Exits, Prev: Iteration, Up: Control Structures Nonlocal Exits ============== A "nonlocal exit" is a transfer of control from one point in a program to another remote point. Nonlocal exits can occur in Emacs Lisp as a result of errors; you can also use them under explicit control. Nonlocal exits unbind all variable bindings made by the constructs being exited. * Menu: * Catch and Throw:: Nonlocal exits for the program's own purposes. * Examples of Catch:: Showing how such nonlocal exits can be written. * Errors:: How errors are signaled and handled. * Cleanups:: Arranging to run a cleanup form if an error happens.  File: elisp, Node: Catch and Throw, Next: Examples of Catch, Up: Nonlocal Exits Explicit Nonlocal Exits: `catch' and `throw' -------------------------------------------- Most control constructs affect only the flow of control within the construct itself. The function `throw' is the exception to this rule of normal program execution: it performs a nonlocal exit on request. (There are other exceptions, but they are for error handling only.) `throw' is used inside a `catch', and jumps back to that `catch'. For example: (catch 'foo (progn ... (throw 'foo t) ...)) The `throw' transfers control straight back to the corresponding `catch', which returns immediately. The code following the `throw' is not executed. The second argument of `throw' is used as the return value of the `catch'. The `throw' and the `catch' are matched through the first argument: `throw' searches for a `catch' whose first argument is `eq' to the one specified. Thus, in the above example, the `throw' specifies `foo', and the `catch' specifies the same symbol, so that `catch' is applicable. If there is more than one applicable `catch', the innermost one takes precedence. Executing `throw' exits all Lisp constructs up to the matching `catch', including function calls. When binding constructs such as `let' or function calls are exited in this way, the bindings are unbound, just as they are when these constructs exit normally (*note Local Variables::.). Likewise, `throw' restores the buffer and position saved by `save-excursion' (*note Excursions::.), and the narrowing status saved by `save-restriction' and the window selection saved by `save-window-excursion' (*note Window Configurations::.). It also runs any cleanups established with the `unwind-protect' special form when it exits that form (*note Cleanups::.). The `throw' need not appear lexically within the `catch' that it jumps to. It can equally well be called from another function called within the `catch'. As long as the `throw' takes place chronologically after entry to the `catch', and chronologically before exit from it, it has access to that `catch'. This is why `throw' can be used in commands such as `exit-recursive-edit' that throw back to the editor command loop (*note Recursive Editing::.). Common Lisp note: Most other versions of Lisp, including Common Lisp, have several ways of transferring control nonsequentially: `return', `return-from', and `go', for example. Emacs Lisp has only `throw'. - Special Form: catch TAG BODY... `catch' establishes a return point for the `throw' function. The return point is distinguished from other such return points by TAG, which may be any Lisp object. The argument TAG is evaluated normally before the return point is established. With the return point in effect, `catch' evaluates the forms of the BODY in textual order. If the forms execute normally, without error or nonlocal exit, the value of the last body form is returned from the `catch'. If a `throw' is done within BODY specifying the same value TAG, the `catch' exits immediately; the value it returns is whatever was specified as the second argument of `throw'. - Function: throw TAG VALUE The purpose of `throw' is to return from a return point previously established with `catch'. The argument TAG is used to choose among the various existing return points; it must be `eq' to the value specified in the `catch'. If multiple return points match TAG, the innermost one is used. The argument VALUE is used as the value to return from that `catch'. If no return point is in effect with tag TAG, then a `no-catch' error is signaled with data `(TAG VALUE)'.  File: elisp, Node: Examples of Catch, Next: Errors, Prev: Catch and Throw, Up: Nonlocal Exits Examples of `catch' and `throw' ------------------------------- One way to use `catch' and `throw' is to exit from a doubly nested loop. (In most languages, this would be done with a "go to".) Here we compute `(foo I J)' for I and J varying from 0 to 9: (defun search-foo () (catch 'loop (let ((i 0)) (while (< i 10) (let ((j 0)) (while (< j 10) (if (foo i j) (throw 'loop (list i j))) (setq j (1+ j)))) (setq i (1+ i)))))) If `foo' ever returns non-`nil', we stop immediately and return a list of I and J. If `foo' always returns `nil', the `catch' returns normally, and the value is `nil', since that is the result of the `while'. Here are two tricky examples, slightly different, showing two return points at once. First, two return points with the same tag, `hack': (defun catch2 (tag) (catch tag (throw 'hack 'yes))) => catch2 (catch 'hack (print (catch2 'hack)) 'no) -| yes => no Since both return points have tags that match the `throw', it goes to the inner one, the one established in `catch2'. Therefore, `catch2' returns normally with value `yes', and this value is printed. Finally the second body form in the outer `catch', which is `'no', is evaluated and returned from the outer `catch'. Now let's change the argument given to `catch2': (defun catch2 (tag) (catch tag (throw 'hack 'yes))) => catch2 (catch 'hack (print (catch2 'quux)) 'no) => yes We still have two return points, but this time only the outer one has the tag `hack'; the inner one has the tag `quux' instead. Therefore, `throw' makes the outer `catch' return the value `yes'. The function `print' is never called, and the body-form `'no' is never evaluated.  File: elisp, Node: Errors, Next: Cleanups, Prev: Examples of Catch, Up: Nonlocal Exits Errors ------ When Emacs Lisp attempts to evaluate a form that, for some reason, cannot be evaluated, it "signals" an "error". When an error is signaled, Emacs's default reaction is to print an error message and terminate execution of the current command. This is the right thing to do in most cases, such as if you type `C-f' at the end of the buffer. In complicated programs, simple termination may not be what you want. For example, the program may have made temporary changes in data structures, or created temporary buffers that should be deleted before the program is finished. In such cases, you would use `unwind-protect' to establish "cleanup expressions" to be evaluated in case of error. (*Note Cleanups::.) Occasionally, you may wish the program to continue execution despite an error in a subroutine. In these cases, you would use `condition-case' to establish "error handlers" to recover control in case of error. Resist the temptation to use error handling to transfer control from one part of the program to another; use `catch' and `throw' instead. *Note Catch and Throw::. * Menu: * Signaling Errors:: How to report an error. * Processing of Errors:: What Emacs does when you report an error. * Handling Errors:: How you can trap errors and continue execution. * Error Symbols:: How errors are classified for trapping them.  File: elisp, Node: Signaling Errors, Next: Processing of Errors, Up: Errors How to Signal an Error ...................... Most errors are signaled "automatically" within Lisp primitives which you call for other purposes, such as if you try to take the CAR of an integer or move forward a character at the end of the buffer; you can also signal errors explicitly with the functions `error' and `signal'. Quitting, which happens when the user types `C-g', is not considered an error, but it is handled almost like an error. *Note Quitting::. - Function: error FORMAT-STRING &rest ARGS This function signals an error with an error message constructed by applying `format' (*note String Conversion::.) to FORMAT-STRING and ARGS. These examples show typical uses of `error': (error "You have committed an error. Try something else.") error--> You have committed an error. Try something else. (error "You have committed %d errors." 10) error--> You have committed 10 errors. `error' works by calling `signal' with two arguments: the error symbol `error', and a list containing the string returned by `format'. If you want to use your own string as an error message verbatim, don't just write `(error STRING)'. If STRING contains `%', it will be interpreted as a format specifier, with undesirable results. Instead, use `(error "%s" STRING)'. - Function: signal ERROR-SYMBOL DATA This function signals an error named by ERROR-SYMBOL. The argument DATA is a list of additional Lisp objects relevant to the circumstances of the error. The argument ERROR-SYMBOL must be an "error symbol"--a symbol bearing a property `error-conditions' whose value is a list of condition names. This is how Emacs Lisp classifies different sorts of errors. The number and significance of the objects in DATA depends on ERROR-SYMBOL. For example, with a `wrong-type-arg' error, there are two objects in the list: a predicate that describes the type that was expected, and the object that failed to fit that type. *Note Error Symbols::, for a description of error symbols. Both ERROR-SYMBOL and DATA are available to any error handlers that handle the error: `condition-case' binds a local variable to a list of the form `(ERROR-SYMBOL . DATA)' (*note Handling Errors::.). If the error is not handled, these two values are used in printing the error message. The function `signal' never returns (though in older Emacs versions it could sometimes return). (signal 'wrong-number-of-arguments '(x y)) error--> Wrong number of arguments: x, y (signal 'no-such-error '("My unknown error condition.")) error--> peculiar error: "My unknown error condition." Common Lisp note: Emacs Lisp has nothing like the Common Lisp concept of continuable errors.  File: elisp, Node: Processing of Errors, Next: Handling Errors, Prev: Signaling Errors, Up: Errors How Emacs Processes Errors .......................... When an error is signaled, `signal' searches for an active "handler" for the error. A handler is a sequence of Lisp expressions designated to be executed if an error happens in part of the Lisp program. If the error has an applicable handler, the handler is executed, and control resumes following the handler. The handler executes in the environment of the `condition-case' that established it; all functions called within that `condition-case' have already been exited, and the handler cannot return to them. If there is no applicable handler for the error, the current command is terminated and control returns to the editor command loop, because the command loop has an implicit handler for all kinds of errors. The command loop's handler uses the error symbol and associated data to print an error message. An error that has no explicit handler may call the Lisp debugger. The debugger is enabled if the variable `debug-on-error' (*note Error Debugging::.) is non-`nil'. Unlike error handlers, the debugger runs in the environment of the error, so that you can examine values of variables precisely as they were at the time of the error.  File: elisp, Node: Handling Errors, Next: Error Symbols, Prev: Processing of Errors, Up: Errors Writing Code to Handle Errors ............................. The usual effect of signaling an error is to terminate the command that is running and return immediately to the Emacs editor command loop. You can arrange to trap errors occurring in a part of your program by establishing an error handler, with the special form `condition-case'. A simple example looks like this: (condition-case nil (delete-file filename) (error nil)) This deletes the file named FILENAME, catching any error and returning `nil' if an error occurs. The second argument of `condition-case' is called the "protected form". (In the example above, the protected form is a call to `delete-file'.) The error handlers go into effect when this form begins execution and are deactivated when this form returns. They remain in effect for all the intervening time. In particular, they are in effect during the execution of functions called by this form, in their subroutines, and so on. This is a good thing, since, strictly speaking, errors can be signaled only by Lisp primitives (including `signal' and `error') called by the protected form, not by the protected form itself. The arguments after the protected form are handlers. Each handler lists one or more "condition names" (which are symbols) to specify which errors it will handle. The error symbol specified when an error is signaled also defines a list of condition names. A handler applies to an error if they have any condition names in common. In the example above, there is one handler, and it specifies one condition name, `error', which covers all errors. The search for an applicable handler checks all the established handlers starting with the most recently established one. Thus, if two nested `condition-case' forms offer to handle the same error, the inner of the two will actually handle it. When an error is handled, control returns to the handler. Before this happens, Emacs unbinds all variable bindings made by binding constructs that are being exited and executes the cleanups of all `unwind-protect' forms that are exited. Once control arrives at the handler, the body of the handler is executed. After execution of the handler body, execution continues by returning from the `condition-case' form. Because the protected form is exited completely before execution of the handler, the handler cannot resume execution at the point of the error, nor can it examine variable bindings that were made within the protected form. All it can do is clean up and proceed. `condition-case' is often used to trap errors that are predictable, such as failure to open a file in a call to `insert-file-contents'. It is also used to trap errors that are totally unpredictable, such as when the program evaluates an expression read from the user. Error signaling and handling have some resemblance to `throw' and `catch', but they are entirely separate facilities. An error cannot be caught by a `catch', and a `throw' cannot be handled by an error handler (though using `throw' when there is no suitable `catch' signals an error that can be handled). - Special Form: condition-case VAR PROTECTED-FORM HANDLERS... This special form establishes the error handlers HANDLERS around the execution of PROTECTED-FORM. If PROTECTED-FORM executes without error, the value it returns becomes the value of the `condition-case' form; in this case, the `condition-case' has no effect. The `condition-case' form makes a difference when an error occurs during PROTECTED-FORM. Each of the HANDLERS is a list of the form `(CONDITIONS BODY...)'. Here CONDITIONS is an error condition name to be handled, or a list of condition names; BODY is one or more Lisp expressions to be executed when this handler handles an error. Here are examples of handlers: (error nil) (arith-error (message "Division by zero")) ((arith-error file-error) (message "Either division by zero or failure to open a file")) Each error that occurs has an "error symbol" that describes what kind of error it is. The `error-conditions' property of this symbol is a list of condition names (*note Error Symbols::.). Emacs searches all the active `condition-case' forms for a handler that specifies one or more of these condition names; the innermost matching `condition-case' handles the error. Within this `condition-case', the first applicable handler handles the error. After executing the body of the handler, the `condition-case' returns normally, using the value of the last form in the handler body as the overall value. The argument VAR is a variable. `condition-case' does not bind this variable when executing the PROTECTED-FORM, only when it handles an error. At that time, it binds VAR locally to a list of the form `(ERROR-SYMBOL . DATA)', giving the particulars of the error. The handler can refer to this list to decide what to do. For example, if the error is for failure opening a file, the file name is the second element of DATA--the third element of VAR. If VAR is `nil', that means no variable is bound. Then the error symbol and associated data are not available to the handler. Here is an example of using `condition-case' to handle the error that results from dividing by zero. The handler prints out a warning message and returns a very large number. (defun safe-divide (dividend divisor) (condition-case err ;; Protected form. (/ dividend divisor) ;; The handler. (arith-error ; Condition. (princ (format "Arithmetic error: %s" err)) 1000000))) => safe-divide (safe-divide 5 0) -| Arithmetic error: (arith-error) => 1000000 The handler specifies condition name `arith-error' so that it will handle only division-by-zero errors. Other kinds of errors will not be handled, at least not by this `condition-case'. Thus, (safe-divide nil 3) error--> Wrong type argument: integer-or-marker-p, nil Here is a `condition-case' that catches all kinds of errors, including those signaled with `error': (setq baz 34) => 34 (condition-case err (if (eq baz 35) t ;; This is a call to the function `error'. (error "Rats! The variable %s was %s, not 35." 'baz baz)) ;; This is the handler; it is not a form. (error (princ (format "The error was: %s" err)) 2)) -| The error was: (error "Rats! The variable baz was 34, not 35.") => 2  File: elisp, Node: Error Symbols, Prev: Handling Errors, Up: Errors Error Symbols and Condition Names ................................. When you signal an error, you specify an "error symbol" to specify the kind of error you have in mind. Each error has one and only one error symbol to categorize it. This is the finest classification of errors defined by the Emacs Lisp language. These narrow classifications are grouped into a hierarchy of wider classes called "error conditions", identified by "condition names". The narrowest such classes belong to the error symbols themselves: each error symbol is also a condition name. There are also condition names for more extensive classes, up to the condition name `error' which takes in all kinds of errors. Thus, each error has one or more condition names: `error', the error symbol if that is distinct from `error', and perhaps some intermediate classifications. In order for a symbol to be an error symbol, it must have an `error-conditions' property which gives a list of condition names. This list defines the conditions that this kind of error belongs to. (The error symbol itself, and the symbol `error', should always be members of this list.) Thus, the hierarchy of condition names is defined by the `error-conditions' properties of the error symbols. In addition to the `error-conditions' list, the error symbol should have an `error-message' property whose value is a string to be printed when that error is signaled but not handled. If the `error-message' property exists, but is not a string, the error message `peculiar error' is used. Here is how we define a new error symbol, `new-error': (put 'new-error 'error-conditions '(error my-own-errors new-error)) => (error my-own-errors new-error) (put 'new-error 'error-message "A new error") => "A new error" This error has three condition names: `new-error', the narrowest classification; `my-own-errors', which we imagine is a wider classification; and `error', which is the widest of all. Naturally, Emacs will never signal `new-error' on its own; only an explicit call to `signal' (*note Signaling Errors::.) in your code can do this: (signal 'new-error '(x y)) error--> A new error: x, y This error can be handled through any of the three condition names. This example handles `new-error' and any other errors in the class `my-own-errors': (condition-case foo (bar nil t) (my-own-errors nil)) The significant way that errors are classified is by their condition names--the names used to match errors with handlers. An error symbol serves only as a convenient way to specify the intended error message and list of condition names. It would be cumbersome to give `signal' a list of condition names rather than one error symbol. By contrast, using only error symbols without condition names would seriously decrease the power of `condition-case'. Condition names make it possible to categorize errors at various levels of generality when you write an error handler. Using error symbols alone would eliminate all but the narrowest level of classification. *Note Standard Errors::, for a list of all the standard error symbols and their conditions.  File: elisp, Node: Cleanups, Prev: Errors, Up: Nonlocal Exits Cleaning Up from Nonlocal Exits ------------------------------- The `unwind-protect' construct is essential whenever you temporarily put a data structure in an inconsistent state; it permits you to ensure the data are consistent in the event of an error or throw. - Special Form: unwind-protect BODY CLEANUP-FORMS... `unwind-protect' executes the BODY with a guarantee that the CLEANUP-FORMS will be evaluated if control leaves BODY, no matter how that happens. The BODY may complete normally, or execute a `throw' out of the `unwind-protect', or cause an error; in all cases, the CLEANUP-FORMS will be evaluated. If the BODY forms finish normally, `unwind-protect' returns the value of the last BODY form, after it evaluates the CLEANUP-FORMS. If the BODY forms do not finish, `unwind-protect' does not return any value in the normal sense. Only the BODY is actually protected by the `unwind-protect'. If any of the CLEANUP-FORMS themselves exits nonlocally (e.g., via a `throw' or an error), `unwind-protect' is *not* guaranteed to evaluate the rest of them. If the failure of one of the CLEANUP-FORMS has the potential to cause trouble, then protect it with another `unwind-protect' around that form. The number of currently active `unwind-protect' forms counts, together with the number of local variable bindings, against the limit `max-specpdl-size' (*note Local Variables::.). For example, here we make an invisible buffer for temporary use, and make sure to kill it before finishing: (save-excursion (let ((buffer (get-buffer-create " *temp*"))) (set-buffer buffer) (unwind-protect BODY (kill-buffer buffer)))) You might think that we could just as well write `(kill-buffer (current-buffer))' and dispense with the variable `buffer'. However, the way shown above is safer, if BODY happens to get an error after switching to a different buffer! (Alternatively, you could write another `save-excursion' around the body, to ensure that the temporary buffer becomes current in time to kill it.) Here is an actual example taken from the file `ftp.el'. It creates a process (*note Processes::.) to try to establish a connection to a remote machine. As the function `ftp-login' is highly susceptible to numerous problems that the writer of the function cannot anticipate, it is protected with a form that guarantees deletion of the process in the event of failure. Otherwise, Emacs might fill up with useless subprocesses. (let ((win nil)) (unwind-protect (progn (setq process (ftp-setup-buffer host file)) (if (setq win (ftp-login process host user password)) (message "Logged in") (error "Ftp login failed"))) (or win (and process (delete-process process))))) This example actually has a small bug: if the user types `C-g' to quit, and the quit happens immediately after the function `ftp-setup-buffer' returns but before the variable `process' is set, the process will not be killed. There is no easy way to fix this bug, but at least it is very unlikely. Here is another example which uses `unwind-protect' to make sure to kill a temporary buffer. In this example, the value returned by `unwind-protect' is used. (defun shell-command-string (cmd) "Return the output of the shell command CMD, as a string." (save-excursion (set-buffer (generate-new-buffer " OS*cmd")) (shell-command cmd t) (unwind-protect (buffer-string) (kill-buffer (current-buffer)))))  File: elisp, Node: Variables, Next: Functions, Prev: Control Structures, Up: Top Variables ********* A "variable" is a name used in a program to stand for a value. Nearly all programming languages have variables of some sort. In the text of a Lisp program, variables are written using the syntax for symbols. In Lisp, unlike most programming languages, programs are represented primarily as Lisp objects and only secondarily as text. The Lisp objects used for variables are symbols: the symbol name is the variable name, and the variable's value is stored in the value cell of the symbol. The use of a symbol as a variable is independent of its use as a function name. *Note Symbol Components::. The Lisp objects that constitute a Lisp program determine the textual form of the program--it is simply the read syntax for those Lisp objects. This is why, for example, a variable in a textual Lisp program is written using the read syntax for the symbol that represents the variable. * Menu: * Global Variables:: Variable values that exist permanently, everywhere. * Constant Variables:: Certain "variables" have values that never change. * Local Variables:: Variable values that exist only temporarily. * Void Variables:: Symbols that lack values. * Defining Variables:: A definition says a symbol is used as a variable. * Accessing Variables:: Examining values of variables whose names are known only at run time. * Setting Variables:: Storing new values in variables. * Variable Scoping:: How Lisp chooses among local and global values. * Buffer-Local Variables:: Variable values in effect only in one buffer.  File: elisp, Node: Global Variables, Next: Constant Variables, Up: Variables Global Variables ================ The simplest way to use a variable is "globally". This means that the variable has just one value at a time, and this value is in effect (at least for the moment) throughout the Lisp system. The value remains in effect until you specify a new one. When a new value replaces the old one, no trace of the old value remains in the variable. You specify a value for a symbol with `setq'. For example, (setq x '(a b)) gives the variable `x' the value `(a b)'. Note that `setq' does not evaluate its first argument, the name of the variable, but it does evaluate the second argument, the new value. Once the variable has a value, you can refer to it by using the symbol by itself as an expression. Thus, x => (a b) assuming the `setq' form shown above has already been executed. If you do another `setq', the new value replaces the old one: x => (a b) (setq x 4) => 4 x => 4  File: elisp, Node: Constant Variables, Next: Local Variables, Prev: Global Variables, Up: Variables Variables That Never Change =========================== Emacs Lisp has two special symbols, `nil' and `t', that always evaluate to themselves. These symbols cannot be rebound, nor can their value cells be changed. An attempt to change the value of `nil' or `t' signals a `setting-constant' error. nil == 'nil => nil (setq nil 500) error--> Attempt to set constant symbol: nil