What is the CORBA Notification Service?

The simplest answer is a service that allows local software to get notified when something happens on a remote machine. This notification is sent in the form of a structured event that (can, but does not have to be) processed by a local machine. The structured event has the capability of containing just about any number of simple CORBA types, IDL structs, IDL sequences, and even references to CORBA objects. The notification service is very powerful in the fact that it allows consumers of these structured events to filter out data they do not want to receive on three different levels. The first level is that of the notification channel itself. A consumer of structured events from “ChannelA” with never see structured events published by “ChannelB”. Next comes the concept of domain_name and type_name. The basic idea is that a structured event consumer will only “see” structured events with the domain and type names it has subscribed to. The consumer can dynamically subscribe to and unsubscribe from a domain/type pair at any given time. A sidenote on this is that according to OMG standards, the ALMA project should adopt “ALMA”, “astronomy”, or possibly even “science” for our official domain_name. Structured event suppliers then specify the domain_name and type_name before they send the event. The last level of filtering is actually the most powerful: the ability to “ignore” entire events based on various values in the structured event. A consumer provides the domain_name, type_name, and a filter string based on extended trader constraint language. This string can be as simple as “$Temperature<=100” for simple CORBA types (implying there is a CORBA integer in the structured event and it is named “Temperature”.

What is a structured event?

A structured event is a data structure defined in IDL that is sent across the Notification Service by suppliers to consumers. There are only three fields that must be “filled out” and everything else is optional. There must be a domain_name, type_name, as well as an event_name. domain_name and type_name deal specifically with a consumer’s subscription, but event_name is basically an arbitrary string defined by the developer. There is one optional field of particular interest to the developer though: filterable_data[]. This is a sequence of CORBA properties (string/CORBA Any pairs) that can be filtered using the extended trader constraint language discussed above.

What’s a notification channel consumer and what are its capabilities?

First and foremost, it’s a CORBA object although 99% of the CORBA is hidden from the developer. The developer must create a subclass of Consumer for each notification channel (there is no way around this regardless of design) and then override one CORBA method, push_structured_event(Structured event) . Whether that particular subclass can process all domain/type pairs of a given channel is up to the developer to decide. Before going any further, I’d like to say the developer has little to no control over when this method is invoked. It is invoked directly by the notification channel when a supplier sends an event. Please just think of the consumer instance as a DO/Component and the structured event supplier as a client of that DO/Component. It’s a nearly identical model.

Next are the CORBA capabilities of all consumers:

· Consumers can subscribe to and unsubscribe from all domain/type pairs on a given channel (whether that particular domain/type of event has been sent yet).

· Consumers can filter out structured events they don’t want to process. In other words, push_structured_event(…) will never be invoked.

· When push_structured_event(…) is invoked by the notification channel, the consumer doesn’t have to do anything with the event (i.e., no filterable data). It can simply be used to execute some local code on a remote condition.

· Consumers can specify when they are ready to start receiving events (this does not have to immediately happen after the consumer is instantiated).

· Consumers can suspend and resume their connections to the channel at any time.

· Consumers can be notified when a Supplier begins publishing a new domain/type of event and dynamically subscribe to it. The same holds true when subscriptions are no longer offered.

· Consumers can automatically execute a method if the connection is ever lost (i.e., the channel is destroyed).

What’s a notification channel supplier and what capabilities does it have?

A supplier is responsible for creating a notification channel (if it does not already exist) and pushing structured events onto that channel. Creating a channel is a little more complicated than it may immediately seem: the developer can specify quality of service and admin properties if the defaults are insufficient. This involves little more than subclassing and uncommenting some CORBA code. The quality of service properties specifies things like event start time and event priority, while admin properties deal more with remote CORBA objects used in the Notification Service. When it comes to sending events, the user can choose to send the structured event with or without filterable data. All the developer must worry about is specifying domain_name and type_name within the structured event. Here are the capabilities of a supplier:

· A Supplier knows when a consumer has subscribed to a domain/type pair on the channel it publishes structured events to. A “smart” supplier will only publish events (thereby reducing network traffic) when consumers are subscribed. This is really only useful in a one supplier to many consumers model.

· Suppliers can automatically execute a method if the connection is ever lost.

· Suppliers can destroy a notification channel (this functionality is not yet supported in the API).

All of this is fine and dandy, but what does it mean for me, the developer?

The ACS API requires only two things of the developer in all three implementation languages: the developer must subclass Supplier and override one method (i.e., setData()) and the developer must subclass Consumer overriding one method (i.e., push_structured_event() to do something useful). Actually the first requirement is pretty flexible: those willing to accept default values for some things can use SimpleSupplier and not have to subclass anything. Furthermore, a single instance of a consumer-derived class has the capability of processing all the different domain/type pairs of a given notification channel. In general, the API provides easy access to all the nifty CORBA features without “forcing CORBA down anyone’s throat” so to speak.

Are there any improvements that can be made to the API?

Without a doubt, the answer is yes. There are a few decisions regarding naming conventions and default values that should be made now instead of later. These include but are not limited to:

· Names of the channels registered with the Naming Service. It’s the author’s suggestion that the subsystem who instantiated a supplier should prepend that subsystem’s name to the channel name. This greatly reduces the chance that two subsystems with different quality of service requirements will try to use the same channel name. In the case that two subsystems will be supplying events (with a common type_name) to the same channel, “ALMA” should be prepended to the name. The channel name is just an arbitrary string residing in the Naming Service that maps to the notification channel remote object residing in the Notification Service.

· The domain_name. A common string hidden inside the API should be adopted. This frees the developer from yet one more naming convention.

· Supplier should be subclassed for an implementation that takes in only the channel name for a constructor parameter. The publishData() method of this supplier would then take in one parameter consisting of the string defining type_name. This specific functionality has been requested by the telescope calibration subsystem. “DatalessSupplier” seems like a descriptive name for this class.

· Default values for quality of service and admin properties. These should probably be determined on a programming language basis.

