[image: image1.wmf][image: image1.wmf]
ALMA

Alma Document Template
ALMA

ACS Time System

Change Record
	REVISION
	DATE
	AUTHOR
	SECTIONS/PAGES AFFECTED

	
	REMARKS

	3.0
	2004-03-08
	D. Fugate
	All

	
	Created rough draft.

	3.1.0
	2004-04-22
	D. Fugate
	All

	
	Updated for 3.1

	3.1.0.1
	2004-04-29
	D. Fugate
	All

	
	Improved formatting and documented newly introduced 3.1 changes.

	4.0.0
	2004-11-09
	D. Fugate
	All

	
	Updated for 4.0

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

Table of Contents

41
Overview

1.1
Glossary
5
1.2
References
6
2
ACS 3.1 to 4.0 Porting Guide
6
3
Design
7
3.1
Requirements
7
3.2
acstime.idl
7
4
Time Helper Classes
8
4.1
C++
8
4.2
Java
8
4.3
Python
8
5
TimeoutHandler Implementations
9
5.1
C++
9
5.2
Java
10
5.3
Python
12
6
Other Useful Information
13
6.1
Editing the Configuration Database
13
6.2
Makefile Support
13
7
Known Problems and Issues
13
8
Appendix
13
8.1
Time System Examples in the ALMA CVS Repository
13
8.2
acstime.idl (ALMA CVS Repository)
13

1 Overview

The ALMA Common Software Time System, based on code from the TICS timeService module, was designed to provide the following functionality to ALMA developers:

· Obtaining the current array time in the standard OMG time format

· Converting array time to various other representations including but not limited to ISO-8601, Universal Coordinated Time, etc.

· The ability to set “timeouts” which asynchronously invoke developer code at a specific time and/or frequency.
· Convert native language time representations to and from OMG array time.

What’s listed above has been accomplished through the implementation of two standard ACS components: Clock and Timer respectively. While this document does not cover all possible uses of these components (the Doxygen-generated documentation for acstime.idl should be more than sufficient for this purpose), it does provide sample implementations of the IDL TimeoutHandler interface in all three CORBA implementation languages supported by ACS. It would be of great benefit to the developer to refer to the glossary of this document constantly as some of the terms used in the Time System can be quite confusing.

It’s essential to note that the ACS Time System does not include support for the 48ms clock based in the antennas’ hardware. While there were specific IDL methods dealing with this pulse in the TICS timeService module, these have since been removed as it was determined knowledge of the timing event was irrelevant outside of the Control and Correlator ALMA subsystems.
1.1 Glossary
	ACS
	ALMA Common Software

	Array Time
	The synchronized time according to all ALMA antennas???

	Clock
	An IDL interface implemented as a standard component which gives users the current OMG array time. Additionally, Clock provides a few time conversion functions along with public access to the variations between array, TAI, and UTC times.

	Duration
	The difference between two epochs. This is a signed value and in IDL it’s represented by the ACS::TimeInterval typedef (i.e., long long) embedded inside a struct.

	Epoch
	A unique instance in (OMG) time. In IDL, an epoch unit is represented by the typedef ACS::Time (i.e., unsigned long long) embedded within a struct.

	IDL
	Interface Definition Language

	OMG Time
	The format of time used by the Object Management Group is based on the beginning of the Gregorian calendar. This is strictly defined as the number of one-hundred nanosecond units that have occurred since October 15, 1582 at precisely 00:00:00. For reference, the last representable date using this format is March 11, 60038.

	TAI
	TAI is short for International Atomic Time. Based on the second unit and derived from a large number of clocks all over the world.

	TimeoutHandler
	An IDL interface which must be implemented by the developer to be used. TimeoutHandler defines a “handleTimeout” method which shall only be invoked by Timer components.

	TICS
	Test Interferometer Control Software. Now known as the ALMA Control Software development group.

	Timer
	An IDL interface implemented as a standard component which is capable of executing developer code at a given instance in time (at a specific frequency if desired). The code to be invoked is passed to the Timer component via the implementation of a TimeoutHandler interface.

	timeService
	A software module that was located in the old ALMA CMM archive and was the basis for the acstime software module.

	UTC
	UTC is short for Coordinated Universal Time. Based on the second unit but unlike TAI, UTC keeps track of so-called leap seconds. Offset from TAI is always an integer number of seconds.

1.2 References

	[R01]
	ACS Architecture 4.0
(http://www.eso.org/~almamgr/AlmaAcs/OnlineDocs/ACSArchitecture-4.0.pdf)

	[R02]
	ACS Software Module(s): “acstime”, “acspy”, “jacsutil”

	[R03]
	CORBA

(http://www.omg.org/technology/documents/formal/corba_iiop.htm)

2 ACS 3.1 to 4.0 Porting Guide

In an effort to reduce duplicated documentation throughout ACS which can lead to inconsistencies, developers should now look at the ACS 4.0 Release Notes for information regarding required and suggested changes: http://almasw.hq.eso.org/almasw/bin/view/ACS/ReleaseNotes_ACS_4_0_0
Essentially all you’ll find there is that a few additional constructors supporting seconds (long double format) have been added to the C++ DurationHelper and EpochHelper classes. Also, a new Java class found in the alma.acs.time.TimeHelper package has been added providing additional time conversion utilities.
3 Design

3.1 Requirements

Please refer to section 3.9 of the ALMA Common Software Architecture document ([R03]).
3.2 acstime.idl
Complete descriptions of all data types and interfaces used within the ACS Time System can be found in the Doxygen-generated documentation for the acsclock IDL module. That being said, very brief, high-level overviews of the standard ACS Time System components are documented below.

	Interface
	Description

	Clock

	An interface used to obtain the current time and provide some general time conversion functionality. Clock is normally only used as a collocated object and will normally be present on all machines (i.e. on both LCUs and general-purpose workstations).

	TimeoutHandler
	Create an object of this class to receive timeout events (not to be confused with channel events). This interface provides a callback type mechanism and can really be thought of as an alarm. A reference to this CORBA object is passed as an argument to Timer’s schedule method. Other arguments to schedule are when the timeout(s) will occur and how often.

	Timer
	An interface designed to schedule timeouts for TimeoutHandler instances. These timeouts can be set to occur only once or on some given frequency. The only other interesting thing to note here is timeouts can be cancelled.

4 Time Helper Classes
C++

There are three classes available in C++ - TimeUtil, EpochHelper, and DurationHelper. TimeUtil converts ACS Epoch and Duration structures to and from ACE time formats. Both EpochHelper and DurationHelper are wrapper classes for the IDL Epoch and Duration structs which overload various operators and provide string conversion methods. More detailed information on these classes and the exact methods they provide can be found in the Doxygen-generated documentation.
Java

There are two helper classes provided in Java – alma.acs.util.UTCUtility and alma.acs.time.TimeHelper. They both provide time conversion functionality. Please see the Doxygen-generated documentation for specific usage.
Python
Python support is nearly identical to C++. The Acspy.Common.TimeHelper package provides TimeUtil, EpochHelper, and DurationHelper classes as well as a getTimeStamp method. EpochHelper and DurationHelper are actually generated from the C++ classes of the same name using SWIG so the C++ Doxygen documentation applies here as well. TimeUtil only differs from the C++ implementation in the fact that it converts OMG time to and from native Python time format(s). For precise information on the functionality provided by TimeUtil, please see the pydoc.
5 TimeoutHandler Implementations
Nearly everything in the ACS Time System is provided as a service so there is hardly anything for the developer to implement. In simple terms, the Time System API includes implemented components where developers need only invoke methods to obtain the desired results. The exception to this is that developers must provide an implementation of the acstime::TimeoutHandler IDL interface if they want a certain code segment executed at a given time and/or frequency. The examples listed below show exactly how to do this in each implementation language supported by ACS.
C++
This example provides the full implementation of a TimeoutHandler C++ class. Detailed information on retrieving a reference to a Timer component has been omitted as this is covered in many other ACS documents and examples. Please note that bolded code should be adapted for your particular needs.
1. #include "acstime.h"
2. class TimeoutHandlerImpl : public virtual POA_acstime::TimeoutHandler
3. {
4. public:
5. void handleTimeout(const acstime::Epoch& e)
6. throw (CORBA::SystemException)
7. {
8. cout << "The current time is:" << e.value << endl;
9. }
10. };
11. //Obtain a reference to a Timer component named “joe”

12. EpochHelper *epoch_p = new EpochHelper();
13. DurationHelper *duration_p = new DurationHelper();
14. acstime::Epoch start;
15. start.value = m_now->get_sync(completion.out());
16. epoch_p->value(start);
17. duration_p->second(3);

18. epoch_p->add(duration_p->value());
19. duration_p->second(1);
20. TimeoutHandlerImpl* mh1_p = new TimeoutHandlerImpl();
21. acstime::TimeoutHandler_ptr corbaTH_p = mh1_p->_this();
22. int id1 = joe->schedule(corbaTH_p, epoch_p->value(), duration_p->value());
	1
	The standard include for the ACS Time System provides access to the CORBA client stubs defined in acstime.idl as well as all of the helper classes.

	3-11
	An implementation of the TimeoutHandler interface must be defined. It is impossible to schedule timeouts without it.

	6-10
	Implementation of the IDL “handleTimeout” method. When the timeout occurs, this method will be invoked asynchronously by the ACS Time System.

	6
	The single parameter is the current time in the form of an Epoch struct. Really the developer only cares about this value when there are periodic timeouts on some interval specified to the Timer component.

	9
	In this simple example, we just print the current OMG (array) time to standard out.

	13
	If you do not understand how to retrieve references to other components, please review the acsexmpl module.

	15-16
	Create a couple of ACS helper objects to manipulate Epoch and Duration structs.

	18-22
	Determine exactly when 3 seconds from TimeUtil will be in OMG time.

	19
	The code used to obtain a reference to the Clock interface’s TimeUtil property has been omitted as this is considered trivial material. Please see the BACI Device Server Programming Tutorial if needed.

	24
	Timeouts will occur once per second until they are cancelled.

	26-27
	Create the TimeoutHandler object and implicitly activate it as a CORBA object.

	29
	In a little under three seconds, line 9 will be printed to standard out once per second forever as a result of this statement. The timeouts could be cancelled using Timer’s cancel method with the id1 variable though.

Java

Essentially identical to the C++ example except that the EpochHelper and DurationHelper classes are not available.

1. import alma.acstime.TimeoutHandlerHelper
2. private class TimeoutHandlerImpl extends alma.acstime.TimeoutHandlerPOA

3. {

4. public TimeoutHandlerImpl()

5. { }

6. public void handleTimeout(alma.acstime.Epoch e)

7. {
8. System.out.println("The current time is: " + e.value);
9. }

10. }
11. //Obtain a reference to a Timer component named “joe”
12. //…
13. CompletionHolder completionHolder = new CompletionHolder();

14. alma.acstime.Epoch start = new alma.acstime.Epoch(m_now.get_sync(completionHolder));

15. start.value = start.value + 3000000;

16. alma.acstime.Duration period = new alma.acstime.Duration(1000000);

17. TimeoutHandlerImpl myHandler = new TimeoutHandlerImpl();

18. TimeoutHandler handlerCORBARef =

19. TimeoutHandlerHelper.narrow(getContainerServices().activateOffShoot(myHandler));

20. int id1 = joe.schedule(handlerCORBARef, start, period);
	1
	Import a useful CORBA stub.

	3-11
	An implementation of the TimeoutHandler interface must be defined. It is impossible to schedule timeouts without it.

	7-10
	Implementation of the IDL “handleTimeout” method. When the timeout occurs, this method will be invoked asynchronously by the ACS Time System.

	7
	The single parameter is the current time in the form of an Epoch struct.

	9
	In this simple example, we just print the current OMG (array) time to standard out.

	13
	If you do not understand how to retrieve references to other components, please review the jcontexmpl module.

	16-18
	Determine exactly when 3 seconds from TimeUtil will be in OMG time.

	17
	The code used to obtain a reference to the Clock interface’s TimeUtil property has been omitted as this is considered trivial material and there are many examples on obtaining references to BACI properties.

	20
	Timeouts will occur once per second until they are cancelled.

	22-24
	Create the TimeoutHandler object and activate it as a CORBA object using the ContainerServices.

	26
	In a little under three seconds, line 9 will be printed to standard out once per second forever as a result of this line. The timeouts could be cancelled using Timer’s cancel method with the id1 variable though.

Python
Nearly identical to the C++ example except that the available EpochHelper and DurationHelper classes have been left out to keep things simple. If you were to utilize these classes in your code, usage would be identical to the C++ example.
1. import acstime, acstime__POA

2. class TimeoutHandlerImpl(acstime__POA.TimeoutHandler):

3. def handleTimeout(self, e):

4. print "The current time is: ", e.value

5. #Obtain a reference to a Timer component named “joe”

6. start = long(m_now().get_sync()[0]) + long(30000000)

7. start = acstime.Epoch(start)

8. period = acstime.Duration(long(10000000))
9. myHandler = TimeoutHandlerImpl()

10. id1 = joe.schedule(myHandler._this(), start, period)
	1
	Import useful CORBA stubs.

	3-5
	An implementation of the TimeoutHandler interface must be defined. It is impossible to schedule timeouts without it.

	4-5
	Implementation of the IDL “handleTimeout” method. When the timeout occurs, this method will be invoked asynchronously by the ACS Time System.

	4
	The single parameter is the current time in the form of an Epoch struct.

	5
	In this simple example, we just print the current OMG (array) time to standard out.

	7
	If you do not understand how to retrieve references to other components, please review the acspyexmpl module.

	9-10
	Determine exactly when 3 seconds from TimeUtil will be in OMG time.

	9
	The code used to obtain a reference to the Clock interface’s TimeUtil property has been omitted as this is considered trivial material and there are many examples on obtaining references to BACI properties.

	12
	Timeouts will occur once per second until they are cancelled.

	14-16
	Create the TimeoutHandler object and implicitly activate it as a CORBA object using the _this method (line 16).

	16
	In a little under three seconds, line 5 will be printed to standard out once per second forever as a result of this line. The timeouts could be cancelled using Timer’s cancel method with the id1 variable though.

6 Other Useful Information
Editing the Configuration Database

Please simply copy the TIMER1 and CLOCK1 entries in $ACS_CDB/CDB/MACI/Components/Components.xml to your own CDB if access to the ACS Time Service is needed. Don’t forget to also copy $ACS_CDB/CDB/alma/CLOCK1.
Makefile Support

In Python and Java, there is nothing special that must be done. For C++ though, developers must link in the acstime shared library.
7 Known Problems and Issues

Java helper classes have a lot missing compared to the C++ and Python implementations.

Subsystems which primarily use Java for their development have different needs for the Time System when compared to Control-oriented software which uses C++/Python to a great extent. When a specific need arises, please submit an SPR and the desired features will be implemented as soon as humanly possible.
8 Appendix

Time System Examples in the ALMA CVS Repository
ACS/LGPL/CommonSoftware/acstime/ws/test/ (C++)
ACS/LGPL/CommonSoftware/jcontexmpl/src/alma/demo/client/TimeoutHandlerClient

ACS/LGPL/CommonSoftware/acspyexmpl/src/acspyexmplTimeoutHandler
acstime.idl (ALMA CVS Repository)
ACS/LGPL/CommonSoftware/acstime/ws/idl/acstime.idl
Author Signature: David Fugate�
Date: 3-8-2004�
�

Approved by:�
Signature:�
�
Institute:�
Date:�
�

Keywords: ACS, Time, OMG, Epoch, Duration, C++, Java, Python, TAI, UTC, Array Time, Clock, Timer, TimeoutHandler, timeService, TICS� KEYWORDS * MERGEFORMAT �

Released by:�
Signature:�
�
Institute:�
Date:�
�

ALMA Common Software Time System

Design and Tutorial	

David Fugate

University of Calgary

Create Date:09/11/04
Rev No.

almadoc.dot
Page 2 of 2
Author: Alan & Gillian
Revision: 4.0

Page 3 o13

_1029135082.doc
[image: image1.png]

