

Front End Design for the mDOM Mainbord

Kalle Sulanke April 2020

Introduction

- ➢ mDOT = mDOM Testboard
- > 4 different analog channels, optimized for very low power
 - Trade off with bandwidth
- > ADC Sampling rate is 100MSPS (max. is 125 MSPS)
 - Pulse shaping required
- > At channel #0,2,3, looking for:
 - ADC baseline noise
 - > Minimum signal level required, to get a trigger
 - > Dynamic range
 - Power consumption

mDOT Blockdiagram

Test Setup

- mini_Fieldhub + 1.5m cable + mDOT
- > mDOT firmware by Tyler Anderson, Aaron Fienberg
 - Python scripts by Aaron Fienberg and Timo Karg
- > Pulse generator Stanford DG 645, to get faked PMT pulses
 - Plus attenuator, 0 to 40 dB
- Tektronix scope MDO3104
- Self made isolating analog coupler, amplitudes from 1mV pk to 0.35V pk
 - Based on RF transformer ADT1-1WT (0.4 to 800MHz bandwidth)
 - > To avoid DC/DC noise by capacitive coupled ground loops
- Massive, light-tight aluminum box (BERNSTEIN CA-480)
 - > 600 x 310 x 180 mm, 4 mm wall thickness

Test Box

channels 0, 2, 3 connected, setup also used for the first cold tests

Original mDOT Channels #1, #2

- > Original channels #1 and #2 have a bit weak preamplifier stages
- Therefore channel #2 modified
- > These modification resulted in the design of channel #0 (piggyback)
- Shown test results basically focus on channel #3 and #0
- Channel #3 designed and simulated by Axel Kretschmann
 - > For optimization, several test boards have been used in the past

Channel #3, Schematic (by Axel Kretzschmann)

Channel #3, typical noise, with open input

Channel #3, 1mV input

> No safe trigger condition found

Front End Design for the mDOM Mainbord, April 2020, Kalle Sulanke, DESY

Channel #3, 2mV input

Channel #3, 7mV input

Channel #3, 200mV input

Channel #3, 4mV PMT signal, HV = 567V

Channel #3, 200mV PMT signal, HV = 846V

Channel #0, the Piggyback Module

> PCB design by Carola Rueger, assembled by Mandy Hemp (DESY workshop)

DC-coupled Channel #0, basic Schematic

LTSpice Schematic used

SPE Signal, LTSpice Simulation Results

DC Linearity Test

- Modules "THS" and "ADA", (different, pin-compatible opamps in front of the ADC)
- ▶ Injecting a DC current 100µA to 3 mA, to get a diff. ADC input voltage of +1V to -1V
- 20K resistor + 0 to 75V power supply as current source
- Voltage vs. current, using two multimeters, ...perfectly linear, both for THS and ADA modules

Typical noise, with open input

➢ Using the ADC driver THS4551

Rin=910R, Rn = **470R**, Cn=6.8p, LP = 51R x **100p**, gain_2 ~ 5, DAC0_e = 44000, DAC1_a = 37200

1/10 SPE input (0.8mV pk)

1SPE input (8mV pk)

400mV input

PMT signal, 4mV, HV = 566V

PMT signal, 200mV, HV = 846V

Front End Design for the mDOM Mainbord, April 2020, Kalle Sulanke, DESY

Noise Comparison, Amplifiers THS4551 vs. ADA4940

Singel ended to diff. Amplifier, ADC driver

Power Consumption of Channel #3

Used default DAC settings

3.3V * 9.15mA= 30.2 mW

> After power supply modification:

3.0V => **27.5 mW**

Power Consumption of Channel #0

with default DAC setting

3.3V * 7,56mA + 1mW (1/4 DAC)= 26 mW

> After power supply modification:

3.0V => 23.7 mW

6*350mW (ADC) + 24*23.7mW (analog chan.)

= 2100mW + 567mW = **2667 mW**

~ 111 mW / channel

Low Temperature Test, first Results

- Temperature measurement using sensors on channel #3 and #0
- mDOT power off at -60°C (board temp.), fridge was at -70°C
- Repowering after 2 hours at -62°C
 - > ICM / mDOT FPGAs, load from flash w/o problems
- ➢ analog channels 0, 2 and 3 are functioning at -60°C
- > ADC (FPGA) recalibration was not required
 - > FPGA internal delays are slightly temperature depending

Baseline Noise at -35°C, PMTs connected, HV = off,

Random PMT Signals at -35°C

value

discriminator

Chan_0, Baseline shift vs. Temp., preliminary

Temp. /°C	Baseline	DAC0_e
-15.85	1991	38500
-9.1	1988	
-7.5	1987	
-5.5	1987	
-4.5	1985	
+4.0	1980	
+11.25	1975	
+16,56	1970	

- \blacktriangleright Baseline shift of ~-0.5% / 30°C (ADC bins, 21 / 4095)
- > More careful resistor (gain), V_ref and DAC selection might reduce this value

Comparison, Channel_0 vs. Channel_3

	Chan_0	Chan_3	remark
Input protection	yes	no	To prevent the damage of the preamplifier stage
Coupling, PMT to ADC	DC	AC	Chan_3 with AC-coupling after preamp.
Power consumption	23.7 mW	27.5 mW	Assuming 3.0V will be used at mDOM
mDOM, DAC channels	54	192	mDOM, 9 vs. 26 FPGA pins
Baseline noise	0.6	1.5	Typical RMS, with open input
Min. trig. thr.	1/16 SPE	1/4 SPE	0.5mV vs. 2mV
Dynamic range	1/800 (?)	1/200 (?)	About, to be measured exactly
Test pulse resolution	16bit	16bit	DAC resolution
Test pulse width	1ns * n	1ns * n	Assuming FPGA – oserdes stage is used, Not yet tested

Channel #0b

- > Allows to adjust the working point of the preamp stage
 - Wider output range
 - > More flexible, could also handle positive pulses
- Improved ADC input protection
- PCB production started
- > 10 modules will be available in first week of May

Conclusions

- > The FPGA firmware is very stable, a good starting point for the final design
- The transformer based test adapter is useful to get rid of distortions, caused by DC/DC converter + AC-coupled ground loops
- > All analog channels work in the cold
- > The mDOT power filtering and PCB design can be copied to the final mDOM design
- > All channels show a fairly low baseline noise
- > the piggyback slot allows fast, low cost analog channel optimization
- further optimization of R,C values might improve the (partial) linearity

Backup Slides

Channel #2, typical noise, with open input

Rin=910R, Rn = **470R**, Cn=10p, LP = 51R x **100p**, DAC0_h = 40000, DAC1_c = 18380

Channel #2, 0.5mV input

Channel #2, 1mV input

Front End Design for the mDOM Mainbord, April 2020, Kalle Sulanke, DESY

Channel #2, 2mV input

Channel #2, 4mV input

Channel #2, 7mV input

Channel #2, 200mV input

Channel #2, 400mV input

Channel #2, 4mV PMT signal, HV = 567V

Channel #2, 200mV PMT signal, HV = 846V

1200

10

20

30

sample number

40

0.00

-0.25

50