PETRA

eH15

Thomas Naumann

Physics

with

HERA

ZEUS

DESY Zeuthen

- DIS: measure NC + CC cross sections with 2 polarizations x 2 lepton charges
 - extract structure functions F_2 , F_L , $xF_3(x,Q^2)$, ...
- QCD analyses:
 - determine parton distribution functions $xq(x,Q^2)$
 - the gluon and α_s
- understand production of Heavy Flavours
- study the nature of diffraction
- look beyond the Standard Model:
 - contact interactions, leptoquarks, SUSY, ...

Reach original HERA goals: HERA proposal, DESY 1981

describe upgrade of HERA and experiments give HERA 1 results - show HERA 2 prospects

Lumi Upgrade

- **1993-2000:** 120 pb⁻¹ e⁺, 20 pb⁻¹ e⁻
- mainly **low** β :
 - move proton quad's from 27 to 11 m
 - superconducting quad's inside detectors
- modest increase of beam currents
- polarization
- 2003-2006/7 : 'close to 1 fb⁻¹'
 - **22.10.03:** 19 mA e⁺ x 52 mA p

 $L_{spec} = 1.6 \ 10^{30} \ cm^2 \ s^{-1} \ mA^2$ $L = 1.6 \ 10^{31} \ cm^2 \ s^{-1}$

	l _e / mA	l _p / mA	β _x / m	β _y / m	L _{spec} / 10 ³⁰ cm ² s ⁻¹ mA ²	L / 10 ³¹ cm² s ⁻¹	L _{int} / pb ⁻¹
1993-2000 2000	50	100	7.00	0.50	0.66	< 2.0	140 67
2002-2003	< 35	< 70	< 3	< 0.25	< 1.68	< 2.7	2.5 - 12 H1 DC - HERA
2003-2007	58	140	2.45	0.18	1.82	3.7 - 7.6 2003 - design	1 000

HERA 2002 / 3

- Luminosity:
 - Low β and specific lumi reached,
 but currents limited by ...
- Background:
 - synchrotron radiation :
 - better masks + collimators :
 - coating, shape (HOMs), cooling
 - lead shielding of beam pipe 2 mm
 - p-gas :

only 25% of lumi with drift chambers

large currents

improve vacuum

- add ion getter pumps
- long bake out
- started Sept 2003

- $\sigma_{cc,pol}(e^{\pm}) = (1 \pm \lambda) \sigma_{cc}(e^{\pm})$
- spin rotators around H1 and ZEUS : $\lambda \sim 50\%$ reached $% \lambda \sim 50\%$ at first try
- need dλ/λ as good as dL/L : ~1% precise polarimeters

- 27.5 GeV e x 920 GeV p
- 2 accelerators : efficiency ²
- reliability: running efficiency Feb 2003: 41 % aging components

	HERA Maximum Peak Luminosity							
	$L = \frac{1}{2\pi}$	$n_b \cdot I_{eb} \cdot I_{\mu}$ $e^2 f_0 \cdot \boldsymbol{\sigma}_x$	$\cdot \boldsymbol{\sigma}_{y}$	I _{eb} =	$= \begin{cases} 0.300 \text{mA} (0) \\ 0.600 \text{mA} (2) \\ 0.600 \text{mA} (2) \end{cases}$	design) 2 x design) (Y2000 max)		
		$I_e \cdot I_p \leq$	$I_{\rm max}^2$	$I_p \cdot I_p \leq$	$\begin{cases} 2000 \ mA^2 = \\ 1500 \ mA^2 \end{cases}$	= I_{max}^2		
$L = \frac{I_{\text{max}} \cdot \sqrt{I_{eb}} \cdot I_{bp}}{2\pi e^2 f_0 \cdot \sigma_x \sigma_y} \longrightarrow \frac{4000 \text{ mA}^2}{\text{Can't get to maximum}}$								
	→ <i>L</i> =	$\frac{1}{2\pi e^2}f_0\cdot c$	$\sigma_x \sigma_y$		n't get to maxim minosity with 18	ium 30 bunches		
-	→ <i>L</i> =	$\frac{1}{2\pi e^2}f_0\cdot c$ Peak Lumino	$\sigma_x \sigma_y$	Ca Lu ects 2003	n't get to maxim minosity with 18	ium 30 bunches	1	
	L = l^2_{max}/mA^2	$\frac{1}{2\pi e^2} f_0 \cdot c$ Peak Lumino	$\sigma_x \sigma_y$ posity Prosp	ects 2003	In't get to maxim Iminosity with 18 L/cm ⁻² sec ⁻¹	um 30 bunches F.Will	eke:	
	$L = \frac{l^2_{max}}{mA^2}$ 2000	$\frac{1}{2\pi e^2} f_0 \cdot c$ Peak Lumino $\frac{I_{ep}}{mA^2}$ 0.3	$\sigma_x \sigma_y$ osity Prosp l_{pb}/mA 0.6	ects 2003 n_b 100	L/cm ⁻² sec ⁻¹	um 30 bunches F.Will ← A like	eke: ly	
	$L = l^2_{max}/mA^2$ 2000 1500	$\frac{1}{2\pi e^2} f_0 \cdot c$ Peak Lumino $\frac{I_{ep}/mA^2}{0.3}$ 0.3	$\sigma_x \sigma_y$ osity Prosp l_{pb}/mA 0.6	$\begin{array}{c} \bullet \\ c_a \\ c_a \\ c_b \\ \hline n_b \\ \hline 100 \\ 90 \end{array}$	L/cm ⁻² sec ⁻¹ 3.75535E+31 3.37982E+31	F.Will	eke: ly	
	$L =$ l^2_{max}/mA^2 2000 1500 4000	$\frac{1}{2\pi e^2} f_0 \cdot c$ Peak Lumino $\frac{I_{ep}}{mA^2}$ 0.3 0.3	$\sigma_x \sigma_y$ posity Prosp l_{pb}/mA 0.6 0.6 0.6	ects 2003 n_b 100 90 140	L/cm ⁻² sec ⁻¹ 3.75535E+31 3.37982E+31 5.2575E+31	Bo bunches F.Will ← A like scenar	eke: ly io	
	$L =$ l^2_{max}/mA^2 2000 1500 4000 2000	$\frac{1}{2\pi e^2} f_0 \cdot c$ Peak Lumino $\frac{l_{ep}}{mA^2}$ 0.3 0.3 0.6	$\sigma_x \sigma_y$ posity Prosp l_{pb}/mA 0.6 0.6 0.6 0.6	$\begin{array}{c} & & \\ & & \\ \\ ects 2003 \\ & \\ n_b \\ \hline 100 \\ & 90 \\ & 140 \\ & 70 \end{array}$	L/cm ⁻² sec ⁻¹ 3.75535E+31 3.37982E+31 5.2575E+31 5.2575E+31	um 30 bunches F.Will ← A like scenar	eke: ly io	
	$L =$ l^2_{max}/mA^2 2000 1500 4000 2000 1500	$\frac{1}{2\pi e^2} f_0 \cdot c$ Peak Lumino $\frac{l_{ep}}{mA^2}$ 0.3 0.3 0.6 0.6	$\sigma_x \sigma_y$ posity Prosp l_{pb}/mA 0.6 0.6 0.6 0.6 0.6	$ \begin{array}{c} $	L/cm ⁻² sec ⁻¹ 3.75535E+31 3.37982E+31 5.2575E+31 5.2575E+31 4.50643E+31	um 30 bunches F.Will ← A like scenar	eke: ly io	

H1 Upgrade

ZEUS Upgrade

DIS Kinematics

centre-of-mass energy squared: s = $(k + p)^2 = 4 E_e E_p$

 $Q^2 = -q^2 = -(k - k')^2 = s x y$ four-momentum transfer squared

 $x = Q^2 / (2P \cdot q)$ Bjorken-x momentum fraction of struck parton

 $y = (P \cdot q) / (P \cdot k)$ inelasticity relative energy transfer to the proton

hadronic energy squared $W^2 = (q + p)^2 = s y$

$$\frac{d^2\sigma^{NC}}{dxdQ^2}(e^{\pm}) = \frac{2\pi\alpha^2}{xQ^4}(Y_+\mathcal{F}_2 \mp Y_- x\mathcal{F}_3 - y^2\mathcal{F}_L) = \frac{2\pi\alpha^2}{xQ^4}Y_+ \tilde{\sigma}_{NC}(x,Q^2)$$

 $Y_{\pm} = 1 \pm (1-y^2)$ helicity dependence

 $\tilde{\sigma}_{NC}$ = reduced cross section

Generalized Structure Functions :

$$\mathcal{F}_{2} = F_{2}^{\gamma} + a_{2} F_{2}^{\gamma-Z} + b_{2} F_{2}^{Z}$$

$$\mathbf{x}\mathcal{F}_{3} = a_{3} \mathbf{x}F_{3}^{\gamma-Z} + b_{3} \mathbf{x}F_{3}^{Z}$$

$$\mathcal{F}_{L} = F_{L}^{\gamma} + \dots$$

parity violating (longitudinal, small at low y)

$$F_{2}^{\gamma, \gamma, Z, Z} = x \sum_{q}^{-1} (e_{q}^{2}, 2e_{q}v_{q}, v_{q}^{2}+a_{q}^{2}) (q+q)$$

$$xF_{3}^{\gamma, Z, Z} = 2x \sum_{q}^{-1} (e_{q}a_{q}, v_{q}a_{q}) (q-q) = 2x \sum_{q=u,d}^{-1} (e_{q}a_{q}, v_{q}a_{q}) q_{v}$$

valence quarks

HERA 1

HERA 2

Standard Model :

describes data over 6 orders of magnitude !

$Q^2 > M_Z^2$:

sensitivity to electro-weak effects :

γ-Z interference:

- constructive for e-
- destructive for e⁺

NC: γ –Z interference

Reduced cross section:

$$\tilde{\sigma} = \frac{1}{Y_{+}} \frac{xQ^{4}}{2\pi\alpha^{2}} \frac{d^{2}\sigma}{dxdQ^{2}}$$

e⁻ constructive effect of γ-Z interference e⁺ destructive

HERA 1 HERA 2 ìЬ 6 = SLAC - BCDM9 0 = NMC H1 e⁻p ■ H1 e⁺p 94-00 500 pb⁻¹ 10⁵ • ZEUS e⁻p 98-99 • ZEUS (prel.) e⁺p 99-00 10⁵ SM e⁻p (CTEQ6D) — SM e⁺p (CTEQ6D) x=0.07 (x40000) 💓 10^{4} 10⁴ x=0.08 (x10000) 10^{3} 10^{3} x=0.13 (x3000) x=0.13 (x2500) x=0.18 (x500) 10^{2} 10^{2} x=0.225 (x200) x=0.25 (x100) 10 10 x=0.35 (x20) 1 1 x=0.40 (x5) x = 0.45 (x2)10⁻¹ 10 10⁻² x=0.65 x=0.75 (x1.5) -2 10 MRSH 10⁻³ -3 10 10³ 10² 10⁴ 10^{2} 10^{3} 104 10⁻¹ 10 1 Q² (GeV²) $Q^2 [GeV^2]$

γ-Z interference: e⁻ constructive / e⁺ destructive 500 pb⁻¹: 10 % cross section error for $Q^2 > 16.000 \text{ GeV}^2$

$$\frac{d^2 \sigma_{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [Y_+ \widetilde{F}_2 - y^2 \widetilde{F}_L \mp Y_- x \widetilde{F}_3] = \frac{2\pi \alpha^2}{xQ^4} Y_+ \widetilde{\sigma}(x,Q^2)$$

$$\mathbf{X}\widetilde{\mathbf{F}}_{3} = (\widetilde{\sigma}^{-} - \widetilde{\sigma}^{+})_{NC} \mathbf{Y}_{+}/2\mathbf{Y}_{-} = 2\mathbf{X}\sum_{q} \mathbf{e}_{q} \mathbf{a}_{q} [\mathbf{q} - \overline{\mathbf{q}}] \sim \mathbf{q}_{v}$$

direct access to valence quark distribution ! Need lumi : HERA 2 !

CC **Cross Section**

$$\frac{d^2\sigma_{CC}}{dxdQ^2} (e^{\pm}) = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2} \right]^2 (Y_+ F_2^{\pm} \mp Y_- x F_3^{\pm} - y^2 F_L^{\pm})$$

HERA Charged Current 1

♂ (e⁻p) > **♂** (e⁺p)

$$\sigma$$
 (e⁻p) ~ x (u+c) + (1-y²) x (d+s)
--- σ (e⁺p) ~ x (u+c) + (1-y²) x (d+s)

CC Cross Section

HERA 2 HER Charged Current 🖈 H1 e p ☆ H1 e⁺p 94-00 SM e p (CTEQ6D) e⁺ 250 pb⁻¹ 250 pb⁻¹ ZEUS e p 98-99 ZEUS e⁺p 99-00 SM e⁺p (CTEQ6D) **e** ٠ • 700 GeV² 2500 GeV 1 b cc cross section $Q^2 = 280 \text{ GeV}^2$ $Q^2 = 530 \text{ GeV}^2$ $Q^2 = 950 \text{ GeV}^2$ 2 reduced 1 0.1 0.1 data 2d_v(1-y)²(1+λ) data 2u_v(1-λ) $Q^2 = 1700 \text{ GeV}^2$ $Q^2 = 3000 \text{ GeV}^2$ $Q^2 = 5300 \text{ GeV}^2$ 0.01 0.01 1 0.2 0.4 0.6 0.8 ō 0.2 0.4 0.6 0.8 7000 GeV² 25000 GeV² 0.5 1 $Q^2 = 9500 \text{ GeV}^2$ $Q^2 = 17000 \text{ GeV}^2$ $Q^2 = 30000 \text{ GeV}^2$ 0.75 ··· x ⋅ u ··· (1-y)²x ⋅ d 0.1 0.1 0.5 0.25 0.01 0.01 ō 0.2 0.4 0.6 0.8 ō 0.2 0.4 0.6 0.8 10 ⁻¹ 10 ⁻¹ 10 ⁻² 10 ⁻¹ -2 -2 Х 10 10 Х need more lumi constrain **u** and **d** σ (e⁻p) ~ x (u+c) + (1-y²) x (d+s) valence quark density at

 σ (e⁺p) ~ x (u+c) + (1-y²) x (d+s)

high x and Q²

HERA 2

CC quark singlet structure function :

$$F_{2}^{cc} = 2 / Y_{+} (\sigma^{+} + \sigma^{-})_{cc} + \Delta(xF_{3}, F_{L})$$

see scaling violations in CC !

HERA 2 :

reach precision of neutrino experiments !

Polarization in CC

• weak interactions violate parity :

 $\sigma_{\rm cc}\left(\lambda,e^{\pm}\right)=\left(1\pm\lambda\right)\,\sigma_{\rm cc}\left(0,e^{\pm}\right)$

- test chiral structure of SM :
 - λ =1.0: switch CC on / off !
 - λ =0.6: simulate with 4 x 50 pb⁻¹
 - $-(1+0.6)/(1-0.6) = 4 \pm 0.0$?
- polarization :
 - varies in time -> syst. error
 - as precise as lumi ? 1-2% ?

CC cross section $e^{-} 2 \times 5 pb^{-1} \lambda = \pm 0.4$

NC cross section

 e^{\pm} 4 x 250 pb⁻¹ $\lambda = \pm 0.7$

try 2003 !?

• " F_2 " of γ -Z interference: parity violating

$$\frac{\sigma(\lambda) - \sigma(-\lambda)}{\sigma(\lambda) + \sigma(-\lambda)} \sim \pm \lambda \kappa_z a_e \frac{G_2}{F_2} \sim \pm \lambda \kappa_z \frac{1 + d/u}{4 + d/u}$$

for NC e[±]

• simulation of 2 x 200 pb⁻¹ with $\lambda = \pm 0.5$:

Figure 4: Expected statistical accuracy of the γZ interference structure function G_2 for $P = \pm 0.5$ and 200 pb⁻¹ for each polarization. From M. Klein, Proceedings DIS Bologna

F_L sensitive to gluon and to theory.

Important measurement + consistency test of QCD !

F_L in LO - NLO - NNLO

R. Thorne, Lepton-Photon, FNAL 2003

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}\mathbf{Q}^2} = \frac{4\pi\alpha^2}{\mathbf{x}\mathbf{Q}^4}(1+(1-\mathbf{y})^2)\mathbf{F_2}(\mathbf{x},\mathbf{Q}^2) - \mathbf{y}^2\mathbf{F_L}(\mathbf{x},\mathbf{Q}^2))$$

T.Lastovicka, EPS 2003 Aachen

HERA 2: vary y by varying E_p $E_p = 300, 350, 465, 920 \text{ GeV } 10 \text{ pb}^{-1} \text{ each}$

L.Bauerdick, A.Glazov, M.Klein, HERA Workshop 1996

0.1

v = 0.3 at

280 GeV

100

26

minimum possible ulletproton energy:

extend kinematics

access large x at lower Q² overlap with BCDMS

 α_{s} from one expt. ?

Ъ

10

1 ⊨_{W² =}

-20 GeV

BCDMS region

10

•x=0.35

•x=0.45

•x=0.55

•x=0.65

 O^2/GeV^2

1000

DGLAP equations:

$$\begin{aligned} \frac{d\mathbf{q}_i(\mathbf{x}, \mathbf{Q}^2)}{d\ln \mathbf{Q}^2} &= \frac{\alpha_S(\mathbf{Q}^2)}{2\pi} \int_{\mathbf{x}}^1 \frac{d\mathbf{z}}{\mathbf{z}} [\mathbf{q}_i(\mathbf{z}, \mathbf{Q}^2) \mathbf{P}_{\mathbf{q}\mathbf{q}}(\frac{\mathbf{x}}{\mathbf{z}}) + \mathbf{g}(\mathbf{z}, \mathbf{Q}^2) \mathbf{P}_{\mathbf{q}\mathbf{g}}(\frac{\mathbf{x}}{\mathbf{z}})] \\ \frac{d\mathbf{g}(\mathbf{x}, \mathbf{Q}^2)}{d\ln \mathbf{Q}^2} &= \frac{\alpha_S(\mathbf{Q}^2)}{2\pi} \int_{\mathbf{x}}^1 \frac{d\mathbf{z}}{\mathbf{z}} [\sum_i (\mathbf{q}_i(\mathbf{z}, \mathbf{Q}^2) + \overline{\mathbf{q}_i}(\mathbf{z}, \mathbf{Q}^2)) \mathbf{P}_{\mathbf{g}\mathbf{q}}(\frac{\mathbf{x}}{\mathbf{z}}) + \mathbf{g}(\mathbf{z}, \mathbf{Q}^2) \mathbf{P}_{\mathbf{g}\mathbf{g}}(\frac{\mathbf{x}}{\mathbf{z}})] \end{aligned}$$

- needed to understand new physics !
- valence quarks :
 % precision
- problem: gluon !

DESY Zeuthen

Th.Naumann

needed to understand new physics, e.g. at LHC !

% precision except for **gluon** :

Zeuthen Seminar 22 October 2003

HERA 1

HERA 2

systematics fitted M.Botje, M.Klein, C.Pascaud, HERA Workshop 1995

• QCD fit of F₂ scaling violations :

 $\alpha_s = 0.1150 \pm 0.0019 \text{ (expt+fit)} \pm 0.0050 \text{ (scale)}$ H1

α_s = 0.1166 ± 0.0052 (expt+fit) ± 0.0040 (scale) **ZEUS**

Jet cross sections: 1, 2, 3 jets
 α_s = 0.1224 ± 0.002 (exp) ± 0.004-5 (theory)

ZEUS	. H	Inclusive jet cross sections in γp (Phys Lett B 560 (2003) 7)
CDF	••••	Inclusive jet cross sections in pp (Phys Rev Lett 8 (2002) 042001)
ZEUS		Subjet multiplicity in NC DIS (Phys Lett B 558 (2003) 41)
ZEUS (prel.)	***	Jet shapes in NC DIS (Contributed paper to IECHEP01)
H1	·	NLO QCD fit (Eur Phys J C 21 (2001) 33)
ZEUS	•••••	NLO QCD fit (Phys Rev D 67 (2003) 012007)
H1 .	••••	Inclusive jet cross sections in NC DIS (Eur Phys J C 19 (2001) 289)
ZEUS	····	Inclusive jet cross sections in CC DIS (hep-ex/0306018)
ZEUS	11.11	Inclusive jet cross sections in NC DIS (Phys Lett B 547 (2002) 164)
ZEUS <u>+</u> experimental	•••·!	Dijet cross sections in NC DIS (Phys Lett B 507 (2001) 70)
		World average
theoretical uncertainty		(S. Bethke, hep-ex/0211012)
0.1	0.12	0.14
		$\alpha_{c}(\mathbf{M}_{z})$

δ α _s	HERA 1	HERA 2
experiment	0.002	0.001
theory	0.005	0.00?

precision limited by **theory** :

NNLO non-singlet expected for 2003NNLO singlet + gluon2004

HERA's Charm and Beauty

HERA $F_2^{c\overline{c}}/F_2$ Q² = 2 GeV² □ H1 96-97 • ZEUS 98-00 7 GeV^2 4 GeV² ¹³ • 0.4 • ZEUS 96-97 **ZEUS NLO** OCD 0.2 0 11 GeV² **18 GeV²** 30 GeV^2 0.4 0.2 0 130 GeV² 60 GeV² 500 GeV² 0.4 0.2 0 10 -3 10 -3 10 -3 10 -5 10⁻⁵ 10 -5

charm fraction in the proton

 F_{2}^{c} / F_{2}

at high Q² reaches 30-40% :

Х

- use $D^* \rightarrow D \pi$ to tag charm
- F₂^c agrees with prediction based on xg(x) from F₂ QCD fits
- and vice versa :

- important consistency check
- improve statistics + systematics

do we understand how to pass the charm threshold in NLO :

match fixed order scheme at $p_T \le m_Q$ with massless NLL resummations (Frixione, ...)

HERA 1 :

 measure in limited phase space : 1.5 < p_T(D*) < 15 GeV | η(D*) | < 1.5

HERA 2 : H1 + ZEUS

new Si detectors + forward trackers

- kinematic range extended by ±1 unit in η
- open new decay channels
- and more lumi ...

HERA 2 : H1+ZEUS

new Si detectors + forward trackers

- extend kinematic range

by ±1 unit in η : smaller extrapolation errors less model dependence

- open new decay channels

HERA 1

HERA 2

K.Daum, hep-ex/9708009

σ(e⁺e⁻ → e⁺e⁻cc̃,bb̃ X) (pb)

b Cross Sections at HERA

HERA 1:

- b excess seen in all experiments
- c excess also at high pt
- still large errors

HERA 2 :

- high lumi
- vertex tagging over larger kine. range smaller extrapolation errors
- theory: need full NLO heavy flavor Monte Carlo's fragmentation treatment

n DESY Zeuthen

HERA 2 : simulate F_2^{b}/F_2^{c} with 500 pb⁻¹

b/c ~ 10% at Q² = 400 GeV² $\,$ b/c \rightarrow 25% at Q² >> m_b^2

DIS Diffraction

get parton structure of diffractive exchange :

 $\boldsymbol{\mathsf{F}_{2}}^{\mathsf{D}}\left(\boldsymbol{t},\,\boldsymbol{\beta},\,\boldsymbol{x}_{\mathsf{IP}},\,\boldsymbol{\mathsf{Q}}^{2}\right)$

 $F_2^{D(3)}$ now covers 4 orders of magnitude in Q^2

QCD fit for diffractive parton densities describes data well

DIS Diffraction

Diffraction: H1 VFPS

HERA 2 H1 VFPS at z = 220 m

simulation for 350 pb⁻¹

- σ^{D} for x_{IP}=0.017 integrated over |t|< 0.8 GeV²
- measure x = β x_{IP} and Q² in central detector

 $x_{IP} F_2^{D(3)}$ at $Q^2 = 8.5 \text{ GeV}^2$, $\beta = 0.2$

- exclusive final states statistics limited
- get high statistics for all proton elastics:

PROCESS	HERA-1 ($100 \mathrm{pb^{-1}}$)	HERA-2 ($1 \mathrm{fb^{-1}}$)
Elastic $ ho^0$ ($Q^2>20~{ m GeV}^2$)	1000	10000
Elastic $\phi(Q^2>20~{ m GeV}^2)$	125	1250
Elastic J/ψ ($Q^2>20~{ m GeV}^2$)	140	1400
Elastic Υ (all Q^2)	50	500
Diffractive D^* ($Q^2 > 10~{ m GeV^2}$)	100 (H1)	1000

disentangle proton spin :

$$\frac{1}{2} = \underbrace{\frac{1}{2} \left(\Delta u_v + \Delta d_v + \Delta q_s \right)}_{\text{HERA 1}} + \underbrace{\frac{J_g}{(\Delta G + L_g)}}_{\frac{\Delta G}{G} = 0.41 \pm 0.18 \pm 0.03}$$

HERA 2 : HERMES recoil

hard exclusive reactions: VM + pseudo scalars + DVCS

Generalized PDF's access orbital momentum of quarks

HERMES

Interference DVCS – Bethe-Heitler $I_{DVCS-BH}$ Lepton charge asymmetry, unpolarized beam + target

 $A_{ch} \sim d\sigma(e^+p) - d\sigma(e^-p) \sim \cos(\Phi_{\gamma\gamma}) \times \text{Re } I_{\text{DVCS-BH}}$

HERA 1

HERA 2 (x_B > 0.2)

 $\mathbf{e} \ \mathbf{p}^{\uparrow} \rightarrow \mathbf{e} \ \mathbf{p} \ \pi \ \mathbf{X}$

First Result from HERA II

only 1/7 of finally needed statistics

$$\pi^{+}: \mathbf{A}_{\mathbf{UT}}^{\sin \Phi} > \mathbf{0} \Longrightarrow \frac{\delta \mathbf{u}}{\mathbf{u}} > \mathbf{0}$$
$$\pi^{-}: \mathbf{A}_{\mathbf{UT}}^{\sin \Phi} < \mathbf{0} \Longrightarrow \frac{\delta \mathbf{d}}{\mathbf{d}} < \mathbf{0}$$
$$\mathbf{BUT}$$

need more statistics to disentangle CollinsFragmentation effects from quark polarizations

transverse spin structure of the nucleon : last missing peace in the leading spin structure of the nucleon

 $e p \uparrow \rightarrow e p X$ Collins fragmentation. Predictions for

49

- large extra dimensions
- leptoquarks

contact interactions

R_p-violating SUSY

√s=319 GeV

10⁴

 Q^2 (GeV²)

HERA, **LEP**, **FNAL** : all have similar 95% CL limits in the TeV range

R_D violating SUSY **BSM**:

SUSY-Top may be lightest squark !

Minimum Supergravity + **R**_P violation :

sensitivity to R_p violating stop:

HERA 1: ~ 270 GeV Tevatron Run 2: 200-250 GeV **HERA 2**:

discovery potential !

BSM: R_p violating SUSY

 $m_{\tilde{q}} < 275 \text{ GeV}$ excluded in large part of parameter space for λ' of electromagnetic strength

SCALAR LEPTOQUARKS WITH F=0 $(\tilde{s}_{1/2,L})$

 \sim

1

54

competitive for small branching ratios: HERA

HERA 1 limits compete with LEP and Tevatron Run 1 **HERA 2** limits compete with Tevatron Run 2

Branching Ratio for LQ HERA 0.6 L3 indir. limit 10 Preliminary 0.5 **ZEUS** limit 0.4 0.3 HERA : H1 direct limit (e⁺ p, Prelim.) 0.025 10 0.2 TEVATRON lim. 0.1 150 175 200 225 250 275 300 325 350 375 400 250 300 350 100 150 200 M₁₀ (GeV) M₁₀ (GeV)

еq

0.9 1

0.8

0.7

S₀L	710	2150
S₀R	640	1700
Š₀R	330	660
S 1/2 L	850	590
S 1/2 R	370	770
Š 1/2 L	430	-
S₁L	490	1190
V₀L	730	3030
V₀R	580	540
V∼₀R	990	1610
V _{1/2} L	420	1000
V _{1/2} R	950	750
V~ _{1/2} L	1020	580
V ₁ L	1360	2170

A.Zarnecki, EPS 2003, Aachen

H1

Min

LQ

(RPV a)

BSM: Leptoquarks

Future Sensitivity on Scalar Leptoquarks

400 pb

TEVATRON

L ≈ 1.5 fb⁻¹

LEP

GeV/g

Flavor Changing Neutral Currents:

single top production

HERA has exclusion potential !

BSM: Lepton flavor violation

 $q_i^{e^+}$ τ^+ , μ^+ q_j

HERA 2 :

high discovery potential in many channels :

TeV	M _s ⁻	M _s +	
LEP (Hewett)	1.2	1.	
H1 (GRW)	0.780	0.820	
D0 Run I+II	1.37		
HERA 2	~ 1		

BSM: Search Strategy

model	beam	best polarization		
	charge	left	right	
right handed	e ⁻	-	$e_R^- \rightarrow \nu_R$	
currents (CC)		-	(W_R)	
SUSY	e^+	A	$e_R^+ \rightarrow$	
R_P Violating			$\tilde{u}_L, \tilde{c}_L, \tilde{t}_L$	
	e	$e_L^- \rightarrow$		
		$\tilde{d}_R, \tilde{s}_R, \tilde{b}_R$		
anomalous top	e^{\pm}	tL	, <i>R</i>	

HERA2 :

Polarization + Lumi

will help to sharpen limits

Use maximum possible energy

F = 0	e^+	$S_{1/2}, V_0$	
Leptoquarks		$e^+_L ightarrow \overline{\check{V}^R_0}$	$\begin{array}{c} e_R^+ \rightarrow \overline{V_1^L} \\ e_R^+ \rightarrow \overline{\tilde{S}_{1/2}^L} \end{array}$
F=2	e	$S_0, V_{1/2}$	
Leptoquarks		$\begin{split} e^L &\to S^L_1 \\ e^L &\to \tilde{V}^L_{1/2} \end{split}$	$e_R^- \rightarrow \tilde{S}_0^R$
Contact Interaction	e^{\pm}	various	
Quark Radius	e^{\pm}	any	
Large Extra Dimens.	e^{\pm}	any	
Excited Fermions	e^{\pm}	$e_L^- \to f_R^*$ $e_R^+ \to f_L^*$	
Excited Neutrinos	e ⁻	$e_L^- \rightarrow \nu_R^*$	

HERA 1 100 pb⁻¹ e⁺: **H1** 10 high p_t multileptons for 3 expected **HERA 2** 1000 pb⁻¹ ?

HERA 2: take up to **1 fb⁻¹** with e^{\pm} and $\pm \lambda$ till 2007

high precision NC and CC data up to highest possible x and Q²

- measure $F_2(x,Q^2)$, $xF_3(x,Q^2)$, $\sigma_{cc}^{\pm}(x,Q^2)$, ...
- disentangle flavor content of proton
- further constrain PDFs
- gluon: $\delta g / g < 3\%$ at x ~ 10^{-2}
- get α_s to < 2%
- understand heavy flavor production
- directly measure F_L(x,Q²) to test QCD with ~10 pb⁻¹ at 3-4 proton energies
- need theory: NNLO !

Look beyond the standard model

for :

- leptoquarks
- SUSY
- contact interactions
- single top production
- excited fermions
- extra dimensions
- •••
- the unexpected !

in Paestum, Italy

before after and **UPGRADE**

