

From HERA

to LHC

Thomas Naumann

DESY Zeuthen

ATLAS D Meeting

DESY Zeuthen

21.09.2007

Overview

1.Structure functions + parton distributions gluon, α₅

W,Z, H, tt cross section precision

2. Heavy Flavors

c,b content of proton

3. Diffraction

4. Final states

multiple interactions underlying event

5.MC tools

versus

proton structure, QCD

Higgs, SUSY,... QCD backgr.

Parton Distribution Functions

LHC is a p-p collider but fundamentally we have parton-parton scattering:

need precise PDF (x,Q²) + their QCD evolution to highest order

parton-parton luminosities and energies ŝ

The HERA legacy

ZEUSprel-07-026

H1 prelim-07-007,

Lepton-Photon 07:

H1,ZEUS: F2 precise to 2-3%

HERA1 combined:

The HERA legacy: PDFs

Cooper-Sarkar et al., HERA-LHC WS 2005

The HERA legacy

LHC W,Z production

Cooper-Sarkar et al., HERA-LHC WS 2005

Parton Distribution Functions

HERA1

HERA combined

much reduced errors, but reveals gluon uncertainty ! get final HERA PDFs !

HERA combined

NLO QCD (JETRAD

- combine H1+ZEUS: lumi ~700 pb⁻¹
- combine with jets
- only more statistics, no better syst.:

smaller error on LHC jet cross sections + New Physics !

The Gluon

Feltesse, Gwenlan, Glazov, Klein, Moch, HERA-LHC WS 2005.

F_L and Gluon

- F_L directly sensitive to gluon

$$F_{I} = \frac{\alpha_{S}}{4\pi} x^{2} \int_{x}^{1} \frac{dz}{z^{3}} \left[\frac{16}{3} F_{2} + 8 \sum e_{q}^{2} (1 - \frac{x}{z}) \right] z^{2}$$

- HERA runs at 460+575 GeV with 16+9 pb⁻¹:

- x check other measurements

PDFs at NNLO

- NNLO partons with uncertainties from experimental errors
- NNLO uncertainties \leq than NLO, at medium xu(x) (NLO-NNLO) > uncertainties
- NNLO fit better than NLO

- NNLO resolves more features of theory: q_s , q_v , \overline{q} evolve with different kernels - Heavy flavors still an issue. DIS07: MRST(MSTW) 3

> Campbell, Huston, Stirling, LHC QCD primer Rep.Prog.Phys. 70 (2007) 89–193. http://www.iop.org/EJ/abstract/0034–4885/70/1/R02/

Standard candle: W, Z production

- W,Z rapidity distribution with scale variation $m_{W,Z}/2 \le \mu \le 2m_{W,Z}$
- NNLO renorm./fact. scale dependence ~1%

(Anastasiou, Petriello, Melnikov '05; Dissertori '05)

- LO -> NLO -> NNLO: ~ normalization only !

Campbell, Huston, Stirling, LHC QCD primer, Rep.Prog.Phys. 70 (2007) 174 f.

Standard candle: W,Z production ?

- 1-2% theory error
- 2% ultimate LHC precision, BUT:
- PDF uncertainties ~7% (CTEQ) dominate !
- more precision needed from HERA medium 0.001 < x < 0.03

Gluon Gluon -> Higgs theor.

- gets large positive corrections from order to order
- renormalization scale uncertainty for scale variation $m_h/2 \le \mu \le 2m_h$ at NNLO still ~10%

Campbell, Huston, Stirling, LHC QCD primer, Rep.Prog.Phys. 70 (2007) 182. see also: Catani, de Florian, Grazzini, Nason, 2003; Anastasiou, Petriello, Melnikov 2005 NNLO: Harlander, Kilgore '02 Anastasiou, Melnikov '02 Ravindran, Smith, van Neerven '03 N³LO soft: Moch, Vogt 05 Gluon Gluon -> Higgs exptl.

- PDF uncertainties 3-5% set dep.
- gluon dominates precision
- qq smaller

A.Djouadi, S.Ferrag, hep-ph/0310209.

tt production

- Tevatron: large x valence quarks produce top: opposite ratio !
- gluon important:
 - PDF uncertainty 3-4%
 - NLO + NLL ~10%
 - total exptl. ~10%

Jets at high $p_{\rm T}$

Extra Dimensions

- affect dijet cross section through running α_s
- parameterized by nr of extra dimensions D + compactification scale M_c

S.Ferrag, hep-ph/0407303

- high x gluon dominates high E_{t} jet cross section.
- PDF uncertainties reduce M_c sensitivity from ~5 to 2 TeV

α_s from HERA jets

- H1 incl. jets (NLO) hep-ex/0706.3722, DESY 07-073.

 $\alpha_s(M_Z) = 0.1193 \pm 0.0023 \text{ (stat)} + 0.0032 \text{ (th)} \pm 0.0010 \text{ (pdf)}$ $\alpha_s(M_Z) = 0.1171 \pm 0.0014 \text{ (stat)} + 0.0047 \text{ (th)} \pm 0.0016 \text{ (pdf)}$

- ZEUS incl. jets (NLO) $\alpha_s(M_z) = 0.1207 \pm 0.0014 \text{ (stat)} \pm 0.0034 \text{ (exp)} \pm 0.0023 \text{ (th)}$

700<Q²<5000 GeV²

H1: DESY 07-073, ZEUS: DESY 06-241. EPS Manchester 07.

-HERA incl. jets (NLO)

 $\alpha_{c}(M_{7}) = 0.1198 \pm 0.0019 \text{ (exp)} \pm 0.0026 \text{ (th)}$

α_s – the run to unification

- need precise α_5 to check SUSY GUT unification $\alpha_1 = (5/3) \alpha / \cos^2 \Theta_W$ $\alpha_2 = \alpha / \sin \Theta_W$ $\alpha_3 = \alpha_5$
- $\delta \alpha_s \sim 0.002$ is the limitation !

α_c=0.1154(40)

16

 $sin^2 \theta_w = 0.23098(26)$

- can lattice take over from expt: 0.1170+0.0012 ?

ی 1/²⁶

25.5

25

24.5

24

15.5

Heavy Flavor

Charm

 $F_2^{c,b}$: proton flavor content

HERA2: H1+ZEUS: Si vertex detectors - c,b lifetime tag

F2 ^c errors						
HERA I: H1 displaced tracks:						
Q ² [GeV ²]	σ_{stat}	σ_{sys}	σ_{tot}			
25	~6%	~8%	~10%			
650	~22%	~15%	~27%			
HERA II Projection:						
Q ² [GeV ²]	σ_{stat}	σ_{sys}	σ_{tot}			
25	~3%	~4%	~5%			
650	~10%	~10%	~14%			

F2 ^b errors							
HERA I: H1 displaced tracks:							
Q^2 [GeV ²]	σ_{stat}	σ_{sys}	σ_{tot}				
25	~20%	~20%	~30%				
650	~40%	~25%	~50%				
HERA II projection:							
$Q^2 [GeV^2]$	σ_{stat}	σ_{sys}	σ_{tot}				
25	~10%	~10%	~15%				
650	~20%	~20%	~30%				
combine							

H1 prelim-07-171, LP 07; ZEUS: DIS Munich 07

H1+ZEUS

Heavy Flavor schemes

PDF ratios CTEQ6.1M charm mass neglected to CTEQ6.5M charm mass implemented

Heavy Flavor

CTEQ6.5M vs. CTEQ6.1: W,Z cross section prediction: ~10 % error

- ratio FFNS/VFNS

Fixed/Variable Flavor Nr Scheme:

- large uncertainty of LHC gg luminosities: 20,30% at $M_{\rm X}$ =0.1,1 TeV
- VFNS exptl. not favored over FFNS

treat heavy flavors correctly otherwise obscure Standard Candle !

Flavor in W production

70%

25%

5%

only u,d,s,c contribute:

Cabibbo favored valence ud Cabibbo favored sea cs Cabibbo suppressed sea change sea symmetry: change W⁻/W⁺ ratio

Flavor in Z production

Diffraction

Diffraction from HERA to LHC

Diffractive Higgs production

for M_H=120-250 GeV
 mass resolution ~ 1 GeV
 from energy of protons

- J^{CP}=0⁺⁺

C+P even state (mostly)

- need diff. PDF at β -> 1
 and Q² ~ M_H²
- sensitive to unintegrated PDFs
- inclusive = background to exclusive

H

D

Diffractive F_2^{D}

Pomeron PDFs

Underlying Event

- and Multiple Interactions:
- on top of LO: parton showers, remnant-remnant interactions
- NOT lumi dependent pile-up !

- not calculable from QCD
- adapt MC models to Tevatron + HERA data
- measure $dN_{ch}/d\eta$, dN_{ch}/dp_T at LHC

Underlying Event

dN_{ch}/dp_t leading jet

- MC models tuned to Tevatron+HERA data differ strongly at LHC !
- PHOJET (DPM) ~ ln(s) PYTHIA (MPI) ~ ln²(s)
- better understanding + tuning:
 PYTHIA dual-core? PHOJET? JIMMY?

QCD + MC event generators

Instead of having defined LO, NLO and shower calculation separately and patching the gap between them by matching schemes

we should define a new shower concept that can naturally cooperate with NLO calculations

Z.Nagy, DIS, Munich 2007.

MC generators

Algorithms for NLO matching:

MC@NLO

Avoiding double counting introduce extra subtract terms

S. Frixione and B. Webber: JHEP 0206:029,2002 S. Frixione, P. Nason and B. Webber: JHEP 0308:007,2003

Krämer-Soper:

include first shower step in NLO calculation + start shower from this configuration.

M. Krämer and D. Soper: Phys.Rev. D69:054019,2004
 Z. Nagy and D. Soper: JHEP 0510:024,2005
 P. Nason: JHEP 0411:040,2004

From HERA ...

- F_2 , $F_2^{c,b}$, F_2^{D} , F_L proton structure functions - PDFs:
 - xq(x): u(x) error ~3%
 - xg(x): large uncertainty
- α_s : error ~2%
- To do:
- HERA final F₂^{c,b}, F_L
- HERA combined F_2 , $F_2^{c,b}$, F_L , g(x), PDFs !
- PDFs, xg(x):
 - combine input from F_2 , $F_2^{c,b}$, F_L , jets
 - consistent charm treatment + NNLO use
- α_s : final inclusive + jet data

.. to LHC

Production	errors PDF	in % Theory	Expt.	
W,Z	7	1-2	2	standard candle
Higgs	3-5	10	5-10	
tt	3-4	10	10	new physics
high E _⊤ jets	10-50	10	15-50	

- uncertainties due to
 - \cdot missing NNLO
 - errors of xg(x)
 - heavy flavor treatment
 - errors on jet energy scale
- underlying event + multiple interactions
 - better understand
- tune MC generators PYTHIA, JIMMY, PHOJET

LHC 2008

Thomas Naumann DESY