Particle Physics - Exercises 6. Two particle kinematics 20.1.11.

- 1. The highest energetic cosmic protons reach energies of more than 10²⁰ eV. They interact with the nucleons in the Earth atmosphere and create huge cosmic showers. Which energy should a proton-proton collider have in order to reach the same energy in the centre of mass?
 [2]
- 2. Show that gamma conversions $\gamma \to \mathbf{e}^+ \, \mathbf{e}^-$ in free space violate the conservation of energy and momentum! [3]
 - Which energy has to be transferred to a recoil nucleon to restore energy-momentum conservation? [3]
- 3. Consider the decay $\pi^0 \to \gamma \gamma$ in flight. One photon moves into and the other opposite to the direction of flight of the π^0 meson. For $E_{\pi^0} = 10 \, m_{\pi^0} = 1.35 \, \text{GeV}$ calculate the energies of both photons in the lab system! [3]
- **4.** What is the maximum momentum of a pion beam that allows its decay muons to be emitted backwards? [3]