Particle Physics - Exercises

5. Electroweak Theory 13.01.2011

In the electroweak theory the vector and axialvector couplings g_V and g_A of fermions to the Z boson are

$$g_V = I_3 - 2Q \sin^2 \theta_W$$

 $g_A = I_3$

 I_3 is the 3rd component of the weak isospin, Q the electric charge and $\sin^2 \theta_W \simeq 0.23$ the electroweak mixing angle.

- 1. Calculate the vector and axialvector couplings
 - of a Z boson
 - of a W boson
 - of a photon

to electrons and neutrinos and to up and down quarks.

[6]

The coupling of a boson to a fermion pair is proportional to $g_V^2 + g_A^2$. It determines the partial decay width or relative decay probability into this decay channel.

- **2.** Calculate the couplings $g_V^2 + g_A^2$
 - of a Z boson
 - of a W boson
 - of a photon

to electrons and neutrinos and to up and down quarks.

[6]

- 3. Which fraction $R_b = \Gamma (Z, \gamma^* \to \overline{b}b) / \Gamma (Z, \gamma^* \to hadrons)$ of all hadronic decays of Z bosons and virtual photons γ^* (at $m_{\gamma}=m_Z$) goes into $\overline{b}b$ quark pairs? [4]
- **4.** The leptonic decay rate of the W boson $\Gamma(W \to e \ v_e) = G_F^m \ M_W^n / 6 \sqrt{2\pi}$ depends on powers of the weak Fermi coupling G_F and the W mass. Determine the powers m and n from the Feynman diagram of the decay and dimensional analysis!

[3]