Particle Physics - Exercise 3

3.1 Isospin is homework, 3.2 C and P invariance we discuss in the exercise!

3.1. Isospin Invariance

The vector addition of two angular momentum states $|j_1m_1\rangle$ and $|j_2m_2\rangle$ to a total angular momentum state $|JM\rangle$ is described by the Clebsch-Gordon coefficients $\langle j_1m_1 \ j_2m_2 \ |JM\rangle$: $|JM\rangle = \sum_{m_1+m_2} |j_1m_1 \ j_2m_2\rangle \langle j_1m_1 \ j_2m_2 \ |JM\rangle$ where $|j_1-j_2| < J < j_1+j_2$ and $M = m_1+m_2$.

1. Use the Clebsch-Gordon coefficients for the isospin states to calculate the ratios of the following strong interaction cross sections σ and decay widths Γ :

 $\sigma \sim \Gamma \sim \big| \left< \text{out} |S|\text{in} \right> \left< j_1 m_1 \, j_2 m_2 \, |JM \right> \big|^2$

Reactions:

$$\sigma(\pi^{-} p \to K^{+} \Sigma^{-}) / \sigma(K^{-} p \to \pi^{+} \Sigma^{-})$$
[2]

Decays:

$$\Gamma(\Delta^{+} \rightarrow p \pi^{0}) / \Gamma(\Delta^{+} \rightarrow n \pi^{+})$$
[2]

2. Give all reasons forbidding the decay $\rho^0 \rightarrow \pi^0 \pi^0$! [3]

3.2. C and P Invariance

2. The quantum numbers spin J and P and C parity for the pseudoscalar mesons π^0 and η^0 are $J^{PC} = 0^{-+}$. The vector bosons γ and Z⁰ and the vector mesons ρ^0 , ω^0 , Φ^0 , Ψ^0 , Ψ^{0^*} , have $J^{PC} = 1^{--}$.

Are the following strong or electromagnetic decays allowed? If not give the violated conservation law!

$$\pi^0 \longrightarrow \gamma \gamma$$

$$\pi^{0} \rightarrow \gamma \gamma \gamma \gamma$$

$$\eta^{0} \rightarrow \pi^{0} \pi^{0}$$
^[1]

$$\boldsymbol{\omega}^{0} \to \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0}$$
[1]

$$\omega^0 \to \pi^0 \,\gamma$$
 [1]

$$\Psi' \rightarrow \Psi \gamma$$
 [1]

3. The K⁺ meson can decay to $(\pi^+ \pi^0)$ and $(\pi^+ \pi^+ \pi^-)$. What is the parity of the two final states? [2] Why can a particle with defined parity decay to final states with different parity? [1]