Particle Physics - Exercises

1. Relativistic Kinematics

1.	Prove that the squares of four-vectors are relativistically invariant!	[]
2.	Prove that the products of four-vectors are relativistically invariant!	[]
3.	Show that the square of the four-velocity is equal 1!	[]
4.	An electron and a proton have the same curvature in a magnetic field.	
	The electron moves twice as fast as the proton. What is the momentum of both particles?	[2]
5.	Due to its large mass the top quark has a large decay width of 1.5 GeV. What are the lifetime and decay length of the top quark?	[2]
6.	A particle decays in flight into a proton and a pion with masses $m_p = 0.938 \text{ GeV}$ and $m_{\pi} = 0.140 \text{ GeV}$. Their momenta are measured to be $p_p = (-0.178, 0.033, -1.343) \text{ GeV}$ and $p_{\pi} = (-0.030, -0.018, -0.059) \text{ GeV}$. What is the mass of the decay particle? Which particle was it?	[3]
7.	In 1987 the supernova SN1987A exploded at a distance of 180.000 light year Assume it simultaneously emitted photons and neutrinos with a momentum o 3 MeV. Calculate the relation between the neutrino mass and the time difference of the arrival of the photons and neutrinos on Earth!	rs. f [3]
8.	 In the LEP collider at CERN in Geneva electrons and positrons were accelerated to 100 GeV and brought to collision. How large was the reaction energy in the centre-of-mass system? To which energy should one accelerate a positron beam in order to reach the same reaction energy on an electron at rest? 	[1] [3]