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The four-dimensional 0(4) (~4 scalar theory is investigated in the broken phase at different values of the quartic coupling 2. 
The scalar mass, the field expectation value and the wave function renormalization constant are calculated. We demonstrate the 
2 dependence of the ratio R~ =ms/(¢~ ~n ) and estimate its upper bound to be around 2.7(1 ). 

1. Introduction.  It is a lmost  r igorously proven that  
the renormal ized  coupling o f  the scalar • 4 theory in 

four d imensions  vanishes in the infini te cu t -o f f l imi t  

and  the theory is t r ivial  [ 1 ]. However ,  the presence 

of  the marginal ly i r relevant  quart ic  coupling can re- 

sult in a non-tr ivial ,  interact ing effective theory at 

energies below the cut-off. In such an effective the- 
ory the ratio o f  the scalar mass rn~ and the field ex- 

pecta t ion  value ( q s )  is basical ly a free parameter .  It 

is expected,  though, that  R s - r n s / ( ¢ s )  is bounded  
from above as one varies the bare quar t ic  coupling 

at any fixed value of  the cut-off  and that  the bound  

is increasing as the cut-off  decreases. When  Acu, ~ ms, 
the effective theory loses its meaning.  As a conse- 
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quence the physical ly sensible value o f  Rs is bounded  
from above by R . . . . .  [ 2 -4 ] .  

The four-component  scalar model  0 ( 4 )  is the heart 
of  the spontaneous  symmetry  breaking and mass 
generat ion mechanism in the s tandard  S U ( 2 )  Higgs 
model.  The t r ivial i ty  o f  the scalar model  may have 
impor tan t  consequences for the G W S  model.  There 
are indicat ions  that  the presence o f  the S U ( 2 )  gauge 
in teract ion does not  change the basic proper t ies  of  
the scalar sector and the s tandard  Higgs model  is still 
a free field theory [ 5 ]. However,  with a large but  fi- 
nite cut-off  at lower energy it describes an effectively 
interact ing model,  where the rat io  R -  m H / m w  is ar- 
b i t rary  but  bounded  from above as Rs is bounded  in 
the scalar model.  

There is an increasing interest  towards  the q~4 sca- 
lar and  the SU (2)  Higgs model.  Recent  Monte  Carlo 
( M C )  calculat ions of  the s tandard  Higgs model  ob- 
tained an upper  bound R ~ 9 [ 6 ]; in a si tuation where 
two typical  masses differ by almost  an order  o f  mag- 
n i tude finite-size effects make  it ra ther  difficult  to 
study the system in detail .  It is a feasible al ternat ive 
to first s tudy only the scalar sector non-per turba-  
t ively and then adding the gauge interact ion accord- 
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ing to perturbative formulas. For example, R and R~ 
are related according to R = R s ×  2/grcn correspond- 

1 r e n  2 ing to the formula m 2w = a~e, ( ~os ) from tree level 
renormalized perturbation theory. As was demon- 
strated in MC studies of  gauge-Higgs systems [ 7 ] 
this relation holds surprisingly well even for the bare 
quantities at sufficiently small gauge coupling. 

In ref. [ 3 ] an approximate renormalization group 
transformation was used to study the 0 ( 4 )  model. 
The calculation reproduced all the qualitatively ex- 
pected features of  the model giving R . . . . .  ~ 3.2. The 
one-component model has been studied recently by 
several groups. In ref. [4] the symmetric and the 
broken phase of  the model are investigated by ana- 
lytical methods focusing on the scaling behaviour and 
the consequences of  triviality. In ref. [8] the au- 
thors' conclusions concerning the field renormali- 
zation constant Z and the irrelevance of the bare self- 
coupling disagree with the mentioned results [ 1,3,4] 
especially for small masses. A recent precise MC cal- 
culation [9] of the Ising limit ( 2 ~ )  studies the 
finite-volume dependence and find good agreement 
with the behaviour expected from the results of  ref. 
[4]. 

Here we report on a study of the lattice regularized 
four-component scalar model in the broken phase 
focusing on the question of the upper bound of Rs. 
We show that the field renormalization constant Z 
is close to 1 in the continuum limit. Work on the 
scaling behaviour of different observables and a more 
detailed finite-size study is in progress and will be 
presented in a forthcoming publication [10]. 

2. Definitions and notations. The lattice action we 
have studied by MC calculation on a lattice A of size 
L 4 ( L =  12 and 14) is 

4 

s =  - x ~ Z ( q ~  q~"+,, + q~  q~"-~) 
x ~ A  , u=  1 

+2 Z ( O ~ g ) ~ -  1) 2 + ~ ~ q ~ ,  ( l )  
_v~A x e A  

where ~:, 2>_-0 are the bare coupling parameters; 
q~?, a =  1 ..... 4 is a real field and we use the con- 
vention that summation over the index a is implied 
whenever it occurs pairwise. For the usual contin- 
uum normalization, where the coefficient of  the ki- 
netic term is 1, the q~ fields should be rescaled to 

For given 2 (and, strictly speaking, for infinite lat- 
tice size) there is spontaneous symmetry breaking 
above a critical value of x. In the broken phase the 
spectrum contains one massive scalar particle and 
three massless Goldstone particles with an unbroken 
SO(3) symmetry. Our goal was to determine the sca- 
lar mass ms and the renormalized field expectation 
value (~0[ en ).  For the latter one has to calculate the 
bare field expectation value, ( ~ 0 s ) = x / ~ ( q ~ )  and 
the wave function renormalization constant Z. A 
possible approach is to determine Z from the residue 
of the propagator of the massive scalar, 

2xaz (p )  =~]  exp(ipx) (~0~(0)~(x))  
x 

=Z(p) /[p  2 + m2(p)] . (2) 

We determine Z from non-zero values of the mo- 
mentum. (In the infinite-volume limit this propa- 
gator diverges at p =  0 due to coupling Goldstone 
modes, cf. e.g. the discussion of the longitudinal 
propagator in ref. [11 ].) In analogy with the one- 
component model [4] one expects a weak momen- 
tum dependence of Z(p) and m(p) up t o  p2"~m2. 
Furthermore, analytic calculations for the one-com- 
ponent model suggest that Z itself is close to 1 [4,9]. 

The presence of the massless modes makes the cal- 
culation of O (4) more problematic than for the one- 
component model. On a finite lattice the direction 
of symmetry breaking erratically moves around in 
group space related to the fact that strictly speaking 
there is no symmetry breaking. This makes it diffi- 
cult to disentangle the massive scalar and the light 
Goldstone modes. Introducing an external field helps 
to stabilize the direction and also gives additional 
mass to the Goldstone particles. However, we found 
[ 10] that close to the phase transition on a 124 or 
similar size lattice one needs a sizeable external cur- 
rent to achieve this effect which makes the necessary 
extrapolation back to vanishing external field 
problematic. 

For this reason we tried another approach. On a 
sufficiently large lattice for a given configuration the 
the sum over fields q~"-= (1/L 4) Zxq~  is an esti- 
mator for the direction of the spontaneously chosen 
vacuum on an infinite lattice. Thus we introduce a 
field operator q~,x by performing a global rotation 
such that the direction of q~" is rotated to the di- 
rection of the one-axis in group space separately for 
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each conf igura t ion .  In the i n f i n i t e - v o l u m e  l imi t  

qb~=~s.x ( in  short ,  q)s,~,) co r re sponds  to the  scalar  op-  

erator ,  its co r re la t ion  func t ion  and  expec t a t i on  va lue  

gives the scalar  mass  and  f ield expec t a t i on  value,  

respect ively .  

We d e t e r m i n e d  the  scalar  mass  f rom the  exponen -  

tial decay  o f  two  d i f fe ren t  opera tors .  The  first  one  is 

the  f ield q b  as de f ined  above  whi le  the  second  one  

is a c o m p o s i t e  f ield opera tor .  

O l ( ~ ' , p ) =  £ e x p ( i x - p ) ~  .... (3)  
A'~Ar 

3 

02(z,p)= ~ ~ exp(ix'p)qg~(x)qb"(x+lt), 
,~A~ ~= i (4) 

where  A~ deno tes  the  t h r e e - d i m e n s i o n a l  subla t t ice  

( " t i m e s l i c e " )  at euc l idean  t i m e  r ~ .  T h e  mass  is ob-  

t a ined  f rom a fit o f  the  connec t ed  cor re la t ion  func-  

t ion  <O(O,p)O(z,p)> ~ to the  fo rm 

a + b { e x p ( - r o T )  + e x p [  - m ( L -  z)] }.  (5)  

The  cons tan t  a is p ropo r t i ona l  to e x p ( -  mL) and  

accounts  for  the f in i te  ex tens ion  in t i m e  when  

< 0 >  ¢ 0  [91. 

3. MC calculation and results. We have  p e r f o r m e d  

ca lcu la t ions  at quar t i c  coupl ing  va lue  2 - -  ~ ,  1.0 and  

0.05 va ry ing  the  h o p p i n g  p a r a m e t e r  x in the  b roken  

phase  in the  region where  the  scalar  mass  is be tween  

~t The operator ~'~q)" couples to the scalar massive states and, 
for finite 2, could be used. It turned out, however, that its cor- 
relation function gives a poor signal and thus we did not in- 
clude it in the analysis. 

Table 1 
Summary of our results f o r2=~ ,  1.0 and 0.05 for lattice size 124 and 164 

2 Lattice x Statistics ( q)s ) 
1000 

O~(k~= 1) ms Z ms R= <~0~ ~o > 

ov 124 

o0 144 

1.0 124 

0.05 124 

0.3050 470 o.133o (2) 
0.3075 41o o.178o (1) 
o.31oo 540 o.214o (1) 
o.3175 500 0.2920 (1) 
0.3250 740 0.3468 (4) 
0.3330 500 0.3920 (4) 
0.3550 660 0.480 (3) 

4.46 (9) 
3.76 (6) 
3.16(3) 
1.98 (1) 
1.44 (1) 
1.o8 (1) 
o.61 (1) 

0.32 (1) 
0.38 (1) 
0.47 (1) 
0.67 (1) 
0.80 (1) 
0.92 (2) 
1.22 (4) 

1.oo(2) 
0.95(2) 
0.96 (2) 
0.92 (2) 
0.88(2) 
0.85(3) 
0.85(5) 

0.3075 400 0.169 (2) 4.79 (11) 0.35 (1) 0.95 (3) 
0.3100 400 0.209 (1) 3.81 (4) 0.43 (1) 0.91 (2) 
0.3175 400 0.289 (1) 2,27 (1) 0.64 (1) 0.90 (2) 
0.3200 295 0.310 (1) 1,99 (1) 0.71 (1) 0.92 (2) 
0.3250 400 0.345 (1) 1.56 (1) 0.81 (2) 0.90 (3) 
0.3300 240 0.374 (1) 1.32 (1) 0.87 (2) 0.87 (5) 
0.3350 150 0.400(1) 1.11 (1) 0.92(2) 0.82(3) 

3.53 (2) 
3.22 (2) 
2.98 (2) 
2.36 (2) 
1.96 (1) 

9.05 (27) 
8.00 (15) 
7.27(10) 
6.53 (8) 
4.62 (3) 
4.02(2) 

0.2520 350 0.307 (2) 
0.2530 270 0.330 (3) 
0.2540 330 0.351 (2) 
0.2570 240 0.406 (6) 
0.2600 150 0.452 (2) 

0.50 (1) 
0.54 (2) 
0.58 (2) 
0.70 (3) 
0.78 (3) 

0.32 (1) 
0.37 (1) 
0.42 (1) 
0.47 (1) 
0.63 (1) 
0.70 (1) 

0.1495 270 0.367 (2) 
0.1500 350 0.442 (2) 
0.1505 350 0.507 (2) 
0.1510 230 0.564 (1) 
0.1530 390 0.746 (1) 
0.1540 1110 0.820 (5) 

0.93 (2) 
0.92 (3) 
0.93 (3) 
0.94 (4) 
0.89 (5) 

1.00 (3) 
0.98 (3) 
0.98 (2) 
0.97 (2) 
0.96 (2) 
0.96 (2) 

3.03 (6) 
2.63 (6) 
2.74 (7) 
2.77 (5) 
2.69 (4) 
2.65 (7) 
2.78 (12) 

2.57 (8) 
2.50 (7) 
2.63 (5) 
2.75 (5) 
2.77 (9) 
2.67 (8) 
2.54 (7) 

2.21 (5) 
2.21 (5) 
2.24 (5) 
2,33 (6) 
2.26 (7) 

1.60 (6) 
1.51 (5) 
1.49 (4) 
1.49 (4) 
1.49 (3) 
1.51 (3) 
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Fig. 1. m~n, versus • as discussed in the text is given for the two 
operators Ot (full circles) and 02 (crosses), for K=0.31, ) ,=~  
for lattice size 14 4. 

0.3 and 1.0. Most  of  the calculat ions were done on 
a 12 4 lattice, and  only a few points  for latt ice size 
14 4. The x values,  the statistics and  our  results are 
summar ized  in table 1 for the three different 2 values. 

We de te rmined  the energy of  the operators  pro- 
jec ted  to states with lat t ice m o m e n t u m  k , -=0 and 
k , =  1 (p~, =2zcku/L)  and found very good agreement  
with the expected spectral  behaviour .  Both opera-  
tors, O~ and 02, couple to Golds tone  in te rmedia te  
states but  the da ta  generally was consistent  with pure  
one-part icle  decay. O~ gave very stable results for the 
mass depending  only very little on the interval  in 
chosen for the fit; the propagator  of  02, on the other  
hand,  deviates  f rom the exponent ia l  decay at small  
z and was noisier.  To give an impress ion on the 
amount  of  systematic  error  we show the var ia t ion  o f  
an effective mass me~(z) which is ob ta ined  with the 
fit (5)  using only da ta  points  at r -  1, ~ and ~ + 1. 
Fig. 1 gives an example  for the typical  behav iour  of  
this effective mass for both  operators  on a 144 lat- 
tice, for 2 = o 0  and a value of  ~: close to the phase 
t ransi t ion.  For  these reasons we dec ided  to take the 
scalar mass f rom the correlat ion funct ion of  O~ for 
k x = 0  ( table 1) and to use 02 only as a consistency 
check in our analysis. 

We have accounted for the tr ivial  lat t ice grid ef- 
fects by subst i tut ing the lat t ice equivalents  in (2) ,  
i.e. p 2 - , 2  52~=~ ( 1 - c o s p ~ )  and m - - , 2 s i n h ( m J 2 ) .  

We de te rmined  Z from our da ta  according to (2)  at 
latt ice m o m e n t u m  k ~ = l .  Using (2)  even at zero 

) ) 

l a l  I I J I 

[ :5 

1 I'IZ ,~ 

Fig. 2. Summary of our results for R~ = - ms/(~o~ en ) versus the in- 
verse dimensionless scalar mass ms as obtained for lattice size 
124 (vertical crosses) and 144 (diamonds); the three vertically 
separated clusters correspond to the different values of 2 = 0.05, 
1.0, and ce, moving upwards. 

m o m e n t u m  leads to values consistent  with those ob- 
ta ined  at non-zero momentum.  On a lat t ice of  finite 
size the singular contr ibut ions  are logar i thmical ly  di- 
vergent  with l ogL  and the observed behav iour  in- 
dicates the coefficient of  this infrared singularity may 
be very small. The value of  Z is consistent  with 1.0 
at the phase t ransi t ion and decreases slowly when 
moving away from the phase t ransi t ion.  The last en- 
t ry in the table gives the rat io  Rs=m~l(~O~s e")  = 
Z] /2ms / ( (o s ) .  

As concerns the results for 2 =  1.0 and 0.05, it is 
interest ing to note that  the correlat ion functions of  
4~ at f inite 2 were more stable than at 2 = o o  giving 
a more  reliable mass value. This indicates that  q)s 
gives a bet ter  signal when the length o f  the field is 
al lowed to fluctuate. 

4. Conclusion. Our calculat ion demonst ra tes  that  
• ~ can be used to de termine  the field expectat ion 
values and the scalar mass at least in the region 
0 . 3 < m s < l . 0  on 12 4 o r  larger lattices. The wave 
funct ion renormal iza t ion  constant  Z may be deter- 
mined  from the propagator  of  q~s at non-zero mo- 
mentum. Z is close to unity in the investigated region. 

We have also s tudied the ~c-dependence of  the sca- 
lar mass and other quanti t ies  and see clear signals of  
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the expected leading scaling behaviour  and a some- 
what weaker signal of the leading logarithmic cor- 
rections. We observed a systematic finite-size 
dependence; this part of the analysis together with 
further results will be presented elsewhere [10], 

In fig. 2 we plot Rs versus 1~ms. The points cor- 
responding to 2 = o9, 1.0 and 0.05 form three distinct 
clusters. One clearly sees the approach to an upper 
bound giving R . . . . .  ~ 2.7 (1). Assuming the validity 
of the perturbative relation to the W-mass and using 

2 gren = 0.4 this corresponds to an upper bound  for the 
ratio between the Higgs mass and the massive vec- 
tor-boson mass of R ~ 8.5 (3). This is consistent with 
the result of ref. [3]. Rs is also close to the upper 
bound  of the one-component  model [4] indicating 
a weak dependence on the number  of components  of 
the q~ field. 

During the completion of this manuscr ipt  we 
learned of an effective potential calculation for the 
one-component  model [12] which is in agreement 
with the results of ref. [4] too. 
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