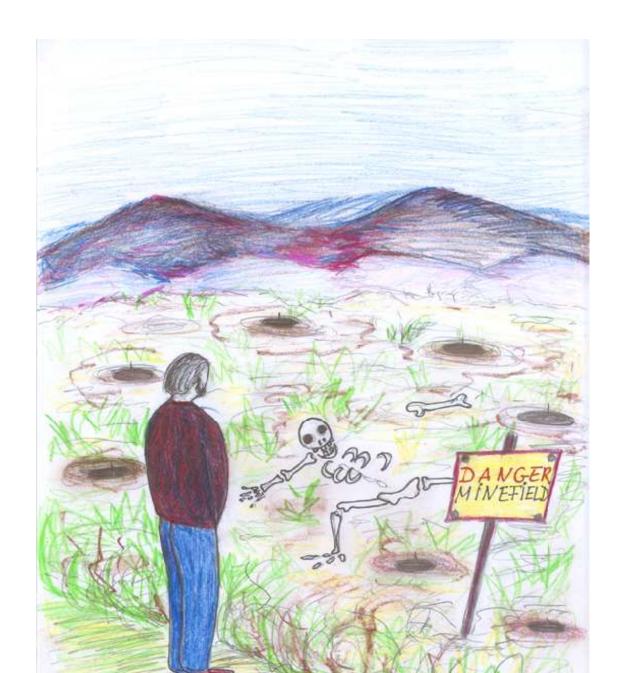
Actions for dynamical fermion simulations: are we ready to go?

Karl Jansen

- Conceptual questions
- Algorithmic questions
- questions in (chiral) perturbation theory
- Practical questions
- some results
- Con(cl)(f)usions



Actions

Wilson fermions

- non-perturbatively improved fermion action
- various gauge actions (Plaquette, Symanzik, RG-improved)

Staggered fermions

- improved fermion action (Asqtad)
- various gauge actions

Domain wall and overlap fermions

- RG improved gauge actions
- fermion actions with eigenvalue projection

Designer actions

- FLIC, Hypercube (various versions) + many more
- → have to agree in continuum limit: provide valuable cross check
- ightarrow don't waste resources

rigorous actions

- reflection positivity, Osterwalder-Schrader positivity, positive transfer matrix ⇒ reconstruction theorem
 - Wilson action Lüscher, Commun.Math.Phys.54:283,1977; for r=1, $\kappa<1/6$ (– tmQCD)
 - (naive) staggered fermions:
 Sharatchandra, Thun, Weisz, Nucl. Phys. B192:205,1981; Smit,
 Nucl. Phys. Proc. Suppl. 20:542-545,1991; Palumbi, hep-lat/0208005
 positive transfer matrix for 2 lattice spacings

not rigorous but local actions

- no proof of reflection positivity or construction of positive transfer matrix
- ultra local actions
 - Designer actions, I will take as example FLIC*
 - Symanzik improved actions
 - truncated perfect action
- exponentially localized
 - overlap
 - domain wall
 - perfect action
- * Fat Link Irrelevant Clover fermions

$$D_{\text{FLIC}} = \frac{1}{u_0} \nabla_{\mu} \gamma_{\mu} + \frac{1}{2u_0^{(fl)}} \left(\Delta^{(fl)} - \frac{1}{2u_0^{3(fl)}} \sigma \cdot \mathcal{F}^{(fl)} \right)$$

Non-local actions?

candidate: taking square root of staggered fermion matrix test following Hernández, Lüscher, K.J.

Source point

$$\eta_{\alpha}(x) = 1$$
 for $x = 1, \alpha = 1$ $\eta_{\alpha}(x) = 0$ else

compute for some operator $A^\dagger A$

$$\Psi(x) = \sqrt{A^{\dagger}A}\eta(x)$$

test whether couplings of the operator decay exponential

$$f(r) = \max\{\|\Psi(x)\|; \|x - y\|_{\text{taxi}} = r\}$$

test for fixed value of lattice spacing a; positive outcome:

$$f(r) = e^{-r/r_{\text{local}}}$$

locality in continuum limit?

possibility |

$$r_{\text{local}} \cdot m_{\pi} = \text{constant}; \text{ for } a \to 0, m_{\pi} \text{ fixed}$$

 \Rightarrow obtain a continuum theory with $r_{\rm local}\propto \xi_{\pi}$ non-local theory on the scale of pion Compton wave length \Rightarrow unacceptable

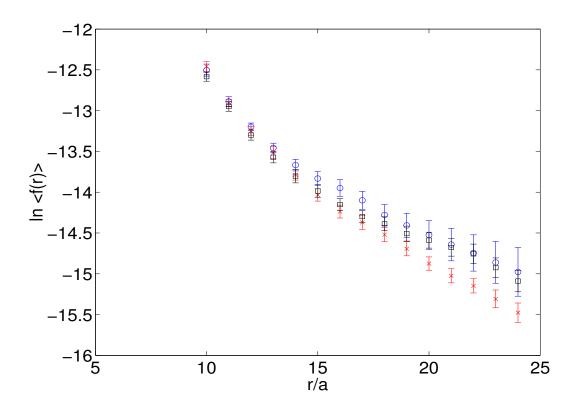
possibility |

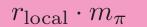
$$r_{\text{local}} \cdot m_{\pi} \to 0 \text{ for } a \to 0, m_{\pi} \text{ fixed}$$

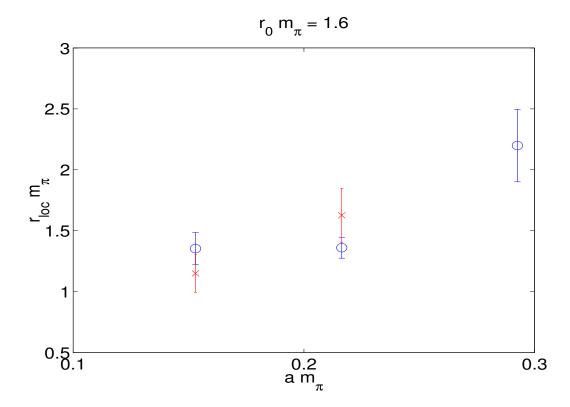
 $\Rightarrow r_{\rm local}/a = const$ obtain a point local continuum theory

A first look

use (F. Knechtli, K.J.): A= Wilson operator, $\sqrt{A^\dagger A}=P_{n,\epsilon}(A^\dagger A)$ fix $r_0\cdot m_\pi=1.6$, various $\beta=6,6.2,6.45$







red crosses: take $r_{\rm local}$ at $\beta=6.0$ and scale it according to change of lattice spacing

My personal wishlist I precise check for localization of staggered fermions work in progress, Della Morte, Knechtli, K.J.

C, P & T

A warning from M. Creutz

spontaneous CP violation might be possible for $m_u \rightarrow 0$ tuning it negative

- miss this possibility when taking square roots?
- miss interesting part of physics?

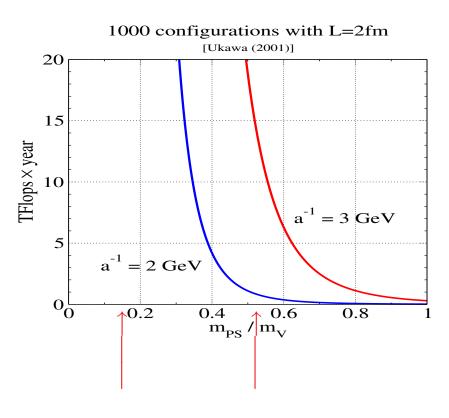
A warning from Klinkhamer and J. Schilling

for a special class of gauge fields $(U_4(\mathbf{x}, x_4) = 1, U_m(\mathbf{x}, x_4) = U_m(\mathbf{x}))$ chiral gauge theories from overlap fermions not CPT invariant

← violation of reflection positivity? Consequences? see also Fujukawa, Ishibashi, Suzuki

Costs of dynamical fermions simulations

see panel discussion in Lattice2001, Berlin, 2001

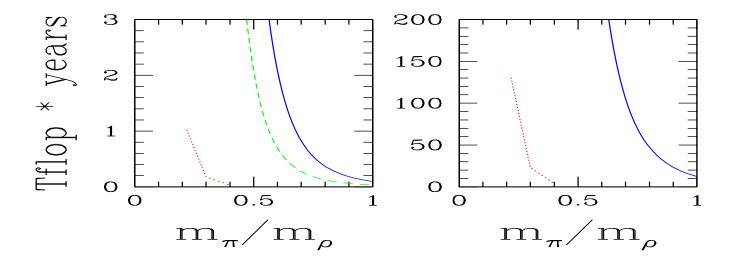


formula
$$C \propto \left(\frac{m_\pi}{m_\rho}\right)^{-z_\pi} (L)^{z_L} (a)^{-z_a}$$
 $z_\pi = 6$ $z_L = 5$ $z_a = 7$

physical contact to point χ PT (?)

 \Rightarrow use chiral perturbation theory (χ PT) to extrapolate to physical point

Wilson versus staggered at fixed box length $L=2.5\ \mathrm{fm}$



 $a=0.09~\mathrm{fm}$

staggered: measured

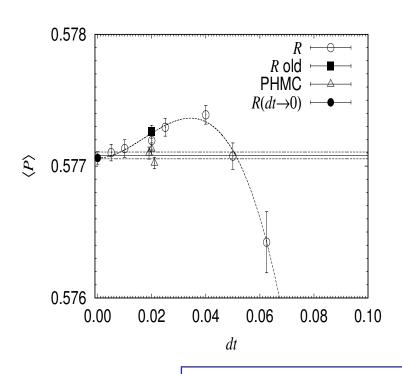
a = 0.045 fm

staggered: extrapolated

full line: Wilson; dashed line: staggered; dashed line: Wilson/3 MILC data, thanks to S. Gottlieb

Exact vs. inexact: why inexact?

Exact algorithm PHMC algorithm for $N_f=3$ Aoki et.al. (JLQCD) hep-lat/0208058 (see also T. Kennedy)



- \rightarrow extraplation to $\delta \tau = 0$ difficult
- \rightarrow treat $(A^{\dagger}A)^{1/n}$ by polynomial
- \rightarrow noisy Metropolis step or correction factor inversion of $(A^{\dagger}A)^{1/n}$ by Lancsoz method
- ightarrow cost of exact algorithm pprox in-exact

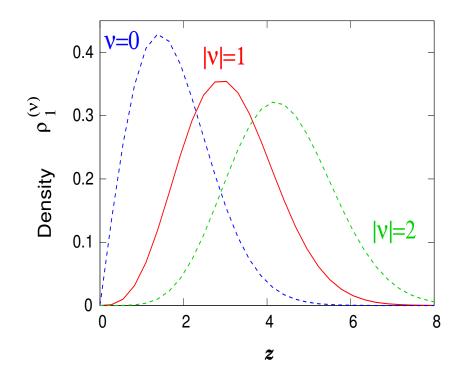
My personal wishlist II

Use and test <u>exact</u> odd flavour algorithms fair comparison of exact algorithms, continuum approach

How to simulate a designer action

- → complicated interactions, fattening
- first way a la Hasenbusch; Hasenfratz and Knechtli + many others
 - i) $U \rightarrow U'$ according to gauge field action
- ii) $\det(A'^{\dagger}A')/\det(A^{\dagger}A) \rightarrow \operatorname{accept/reject}$; correction factor
- iii) needs smearing/fattening improvements: break up of determinant, ultraviolett filtering, · · ·
- second way a la W. Kamleh re-unitarization through $X/\sqrt{X^\dagger X}$ expand $1/\sqrt{X^\dagger X}$ use chain rule to go from fattended link $U^{(n)}$ to original link $U^{(0)}$

A problem of principle: the eigenvalue distribution from Random matrix Theory



- ⇒ small eigenvalues have to appear, checks in quenched simulations Bietenholz, Shcheredin, K.J., QCDSF, Weisz et.al.
- ⇒ can lead to large statistical fluctuations or difficulties in the simulations when approaching the physical point

Perturbation theory

(review Capitani, hep-lat/0211036)

Analysis for Wilson fermions Bochicchio, Maiani, Martinelli, Rossi, Testa

Analysis for staggered Sharatchandra, Thun, Weisz; Goltermann, Smit, Vink

Designer actions

more links of course more complicated but doable

fattening/smearing/blocking →

$$\int \frac{d^4q}{(2\pi)^4} I(q) \to \int \frac{d^4q}{(2\pi)^4} \left(1 - \frac{c}{6}\hat{q}^2\right)^{2N} I(q)$$

c < 1 smearing coefficient, N number of smearing steps

tadpole contribution substantially reduced:

$$12.23g_0^2/(16\pi^2)C_F \rightarrow 0.35g_0^2/(16\pi^2)C_F$$

Reisz Power Counting Theorem

(Reisz, Lüscher)

statement is that the lattice integral

$$I = \int_{-\pi/a}^{\pi/a} \frac{d^4k}{(2\pi)^4} \frac{V(k,m,a)}{C(k,m,a)}$$

exists in the continuum limit, if (among others) the condition

$$|C(l, m, a)| \ge A(\hat{l}^2 + m^2)$$

is fulfilled for a small enough and some positive value of A

Wilson
$$(r = 1)$$
 $C = (1 + am)\hat{p}^2 + m^2 + \frac{1}{2}a^2 \sum_{\mu < \nu} \hat{p}_{\mu}^2 \hat{p}_{\nu}^2$

Staggered
$$C = \sum_{\mu} \sin^2 k_{\mu} + m^2 = \sum_{\mu} \hat{k}^2 - \frac{a^2}{4} \sum_{\mu} \hat{k}^4 + m^2$$

My personal wishlist III

construct a "Reisz theorem" for staggered fermions

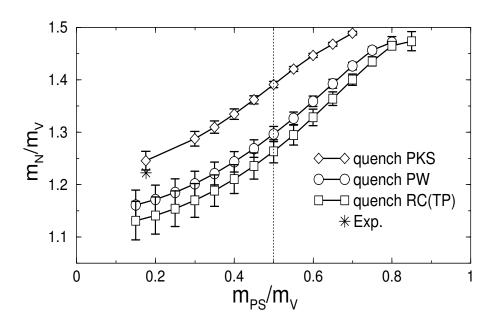
Inconsistencies?

S. Aoki, hep-lat/0011074, Lattice2000 review

PKS: plaquette action, staggered fermions

PW: plaquette action, Wilson fermions

RC(TP): RG gauge action, tadpole improved Wilson

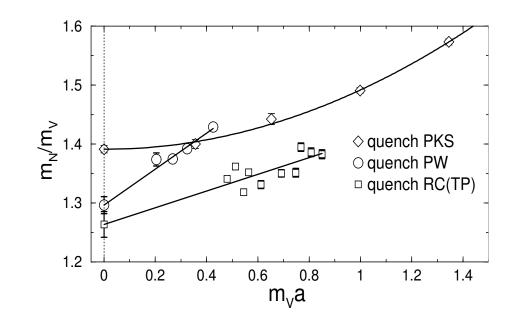


→ different continuum results even at large masses!

The continuum extrapolation

S. Aoki, hep-lat/0011074, Lattice review

$$m_{\pi}/m_{\rho} = 0.5$$



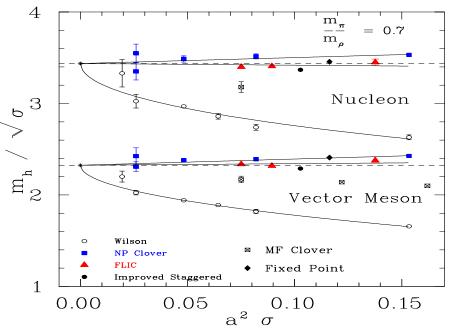
Large lattice artefacts/alternative fits?



K.J. and J. Zanotti fit may not not be the final one, but it is a possibility

My personal wishlist IV precise scaling analysis for various fermion actions in the quenched approximation

A scaling plot



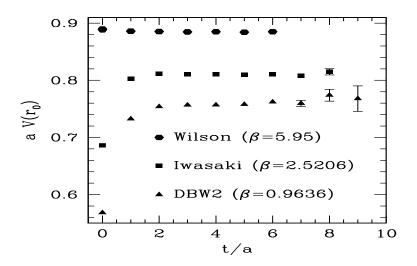
thanks to J. Zanotti

(talks by A. & P. Hasenfratz for scaling tests of Hyp, Asqtad, CI and TP)

Problems in practical dynamical simulations: Gauge actions

I: RG action → not reflection positive

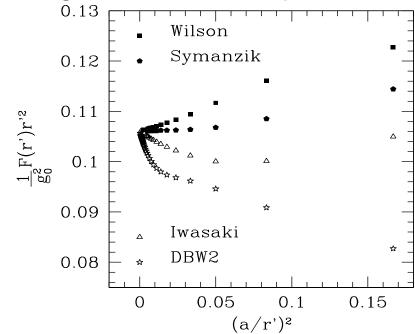
⇒ complex energies



Necco, Sommer

free field analysis:
$$t \gg t_{\rm min} = \left\{ \begin{array}{ll} 0.5 & {\rm Symanzik} \\ 0.9 & {\rm Iwasaki} \\ 1.7 & {\rm DBW2} \end{array} \right.$$

II: large lattice artefacts possible

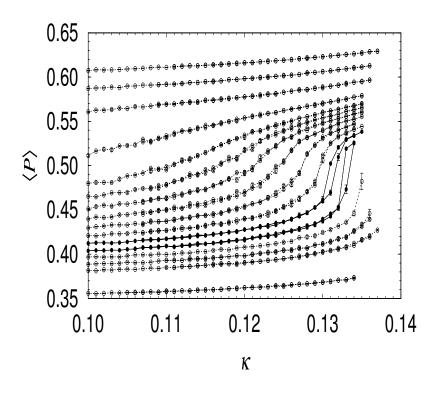


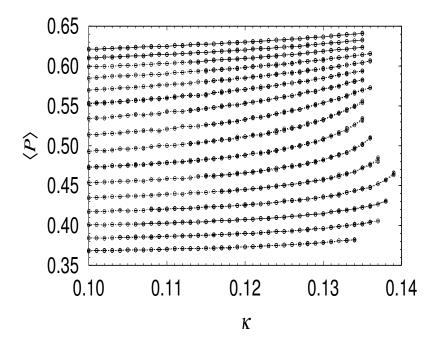
 \Rightarrow two action method?

III: difficulty of sampling topological charge sectors

Problems in practical dynamical simulations: Wilson

Simulations with $N_f=3$ improved fermions CP-PACS

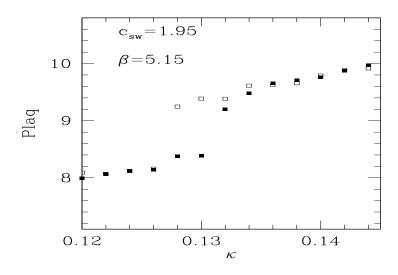




Wilson gauge

RG improved action

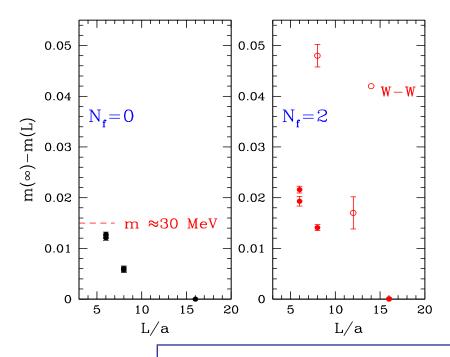
Simulations with $N_f=2$ Wilson gauge non-perturbatively improved fermions (K.J.)



- hysteresis effect
- ullet effects almost independent from values $1 < c_{
 m sw} < 2$
- small lattice simulations

(unexpected) large lattice artefacts in quark mass

Wilson gauge, non-perturbatively improved Wilson fermions



Non-perturbatively improved Wilson

 $m(\infty) = m(16)$, W-W: Wilson action

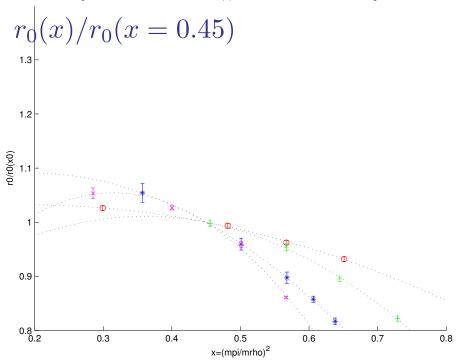
My personal wishlist VI

Study and understand T=0 phase diagram of QCD Investigate different gauge actions understand nature of phase transition

W-KS: \times W-W: + I-SW: • W-SWimpr: *

R(y) for $y_{\rm ref}=0.45$, $a\approx 0.1\,{\rm fm}$

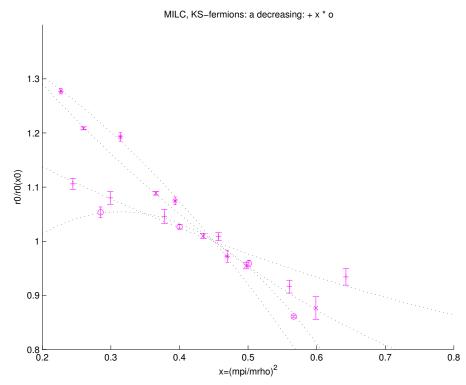
green +: SESAM, red o: CPPACS (o), blue *: JLQCD, KS-fermions: magenta x



 $x = (m_{\pi}/m_{\rho})^2$

Large effects?

KS-fermions various $a \geq 0.1 \, \mathrm{fm}$

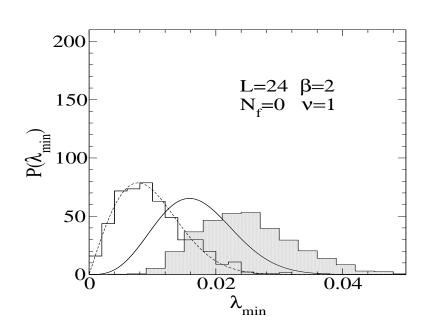


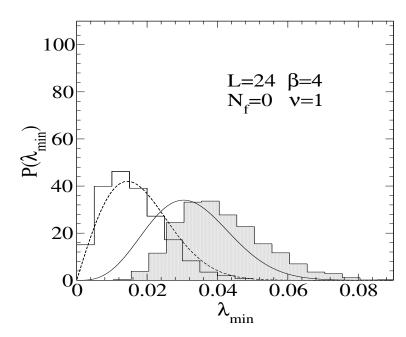
Large cutoff effects!

R. Sommer

Problems in practical dynamical simulations: Staggered

Eigenvalue distribution of staggered operator in comparison to Random matrix theory





Farchioni, Hip, Lang

see also: Damgaard, Heller, Niclasen, Rummukainen, Berg, Markum, Pullirsch, Wettig

does problem disapear for $a \ll 1$? How do improved actions behave?

Results (nevertheless) Wilson

- comparison to chiral perturbation theory
- finite size effects
- status of running quark mass
- towards $N_f = 3$
- meson spectrum

Chiral Perturbation theory

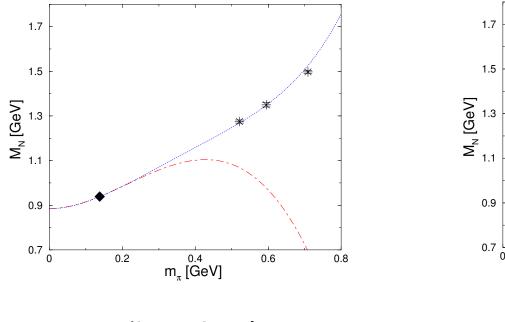
two strategies:

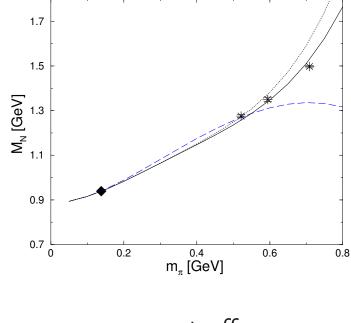
- 1.) extrapolate to continuum limit and fit then to predictions of χPT advantages/disadvantages
- chiral invariance ensured
- direct comparison possible
- computationally demanding

in practise (χ PT practitioners): lattice data at non-vanishing lattice spacing are compared to continuum formulae

lattice data from chirally non-invariant lattice formulations

Example Bernard, Hemmert, Meissner

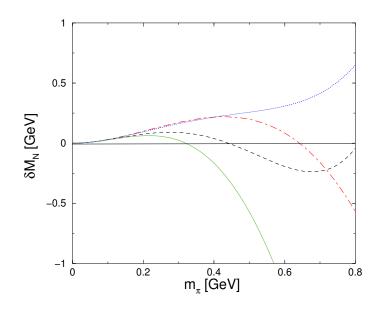


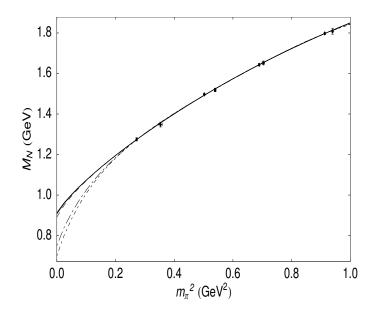


dimensional

cut-off

- 4-loop results (quadratic in quark mass) keeping consistently chiral symmetry
- parameters of chiral lagrangian *fixed* at physical point
- "improvement term" added but only one!!
- data (CP-PACS) at smallest values of a availabe: close enough to the continuum? (see later)





size of 4-loop corrections

Leinweber, Thomas, Young ("pion cloud")

BHM: We stress again that applying the expressions to pion masses above 600 MeV is only done for illustrative purposes, for a realistic chiral extrapolation smaller pion masses are mandatory

- it is possible to model lattice data
- clearly want, however, pure chiral perturbation theory

Chiral Perturbation theory

2.) take discretization effects into account Sharpe

Wilson fermions Baer, Rupak, Shoresh; Aoki

- ⇒ duplication of low energy constants
- \rightarrow physical LEC $l_4, \cdots, l_8 \leftrightarrow w_4, \cdots, w_8$

Staggered fermions Aubin, Bernard, Goltermann, Lee, Sharpe + · · ·

start with Lee-Sharpe lagrangian

$$L = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{1}{4} \mu m f^2 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) + \frac{2m_0^2}{3} (\Phi_I)^2 + a^2 V$$

$$\Sigma = \exp(i\phi/f), \ , \ \phi = \sum_{a}^{16} \phi_a T_a$$

 Φ_I singlet field

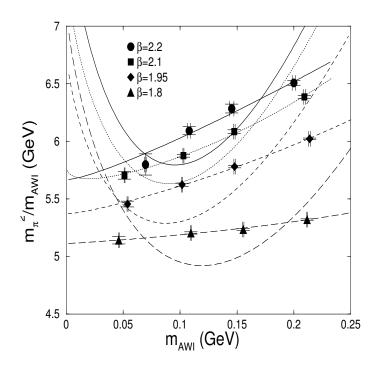
V staggered flavor breaking potoential \rightarrow six terms with coefficients C_1, \cdots, C_6

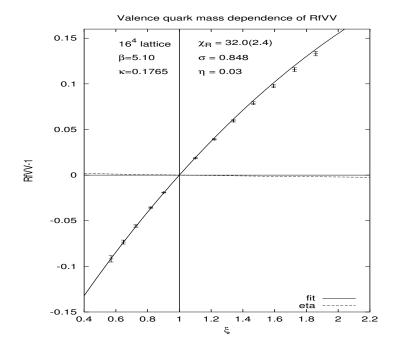
Chiral Perturbation theory

advantages/disadvantages

- lattice discretization effects can be (partly) absorbed
- allows for hybrid simulations such as improved fermions dynamical, overlap quenched
- (many) new parameters
- dependence of new fit parameters on g_0

Wilson examples





$$M_\pi^2/m_q$$
 (Aoki)

double ratio (Farchioni, Gebert, Montvay, Scholz, Scorzato)
$$Rf_{VV} = \frac{M_\pi^2(\text{sea})/m_q(\text{sea})}{M_\pi^2(\text{valence})/m_q(\text{valence})}$$

 \rightarrow amazing cut-off cancelations in double ratios $a=0.28 {\rm fm}$ (!)

Chiral Perturbation theory

remarks: it would be important to disentangle

- sea quark effects: plot only sea quark dependence
- a effects: de-double double ratios

a problem for universal LEC: assume

Aoki: shifting
$$\beta=2.1 \rightarrow \beta=2.2$$
, $\Lambda=0.694(20) \rightarrow \Lambda=0.128(88)$

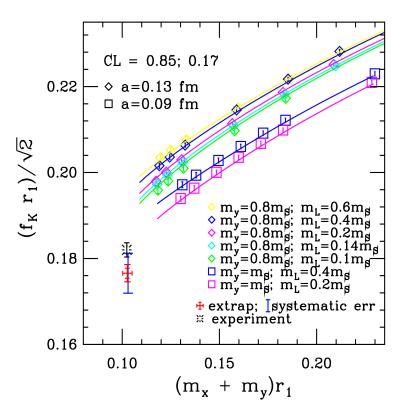
DESY group: different definitions of lattice spacing a: $\Lambda_3/f_0=30.4(2.9)$ or $\Lambda_3/f_0=6.51(57)$

results are a warning that more studies are needed

Chiral Perturbation theory

A staggered example (thanks to C. Bernard)

 f_K ; taste viols; $N_f = 2+1$, finite V effects removed



 f_{π}, f_{K} agree with experiment

combination of GL coefficients seem to rule out $m_u=0$ scenario

Two notes:

First: taking $\sqrt{\det}$ amounts in $S\chi PT$ to a partially quenched situation with 2 quenched fermions Bernard, Golternman

 $\det^{1/4}$ with u,d,s quarks means in 1-loop of S χ PT

• do S χ PT with $N_f=4$ flavours; correct by hand: multiply loops by 1/4

generalizable to all orders of S χ PT? Bernard

- replica trick: computation with arbitary N_u , N_d , N_s of u,d,s quarks
- correct/tune by hand: set $N_u = N_d = N_s = 1/4$

Second: nice example of application of χPT (Chandrasekharan, Jiang)

→ very precise computation of condensate and susceptibility using meron cluster alorithm in strong coupling limit

My personal wishlist V

Need to discuss all these issues of chiral perturbation theory

→ workshop

Finite size effects

generally
$$M(L)-M=-\frac{3}{16\pi^2 ML}\int_{-\infty}^{\infty}F(iy)e^{\sqrt{M_{\pi}^2+y^2}L}$$

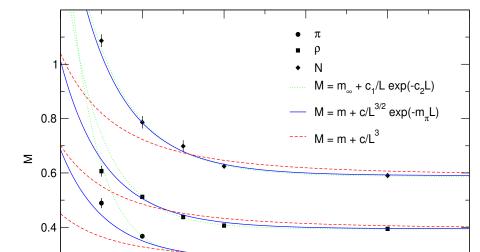
F: $\pi-\pi$ forward scattering amplitude in infinite volume

Lüscher's formula $L^{-3/2}e^{-m_{\pi}L}$: leading order of F

corrections: Colangelo, Dürr, Sommer

$$\frac{1}{2}L^{-3/2}e^{-m_{\pi}L} + \frac{1}{\sqrt{2}L^{-3/2}}e^{-\sqrt{2}m_{\pi}L} + \frac{1}{\sqrt{3}L^{-3/2}}e^{-\sqrt{3}m_{\pi}L}$$

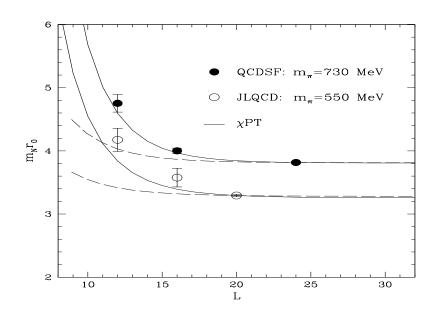
find (found) in practise $M=m_{\infty}+c/L^3$ (Fukugita, Mino, Okawa, Parisi, Ukawa)



Lippert, Orth, Schilling

→ claim: find expected
 exponential finite size effects
 coeff. of exp. fitted

Finite size effects from chiral perturbation theory



QCDSF collaboration

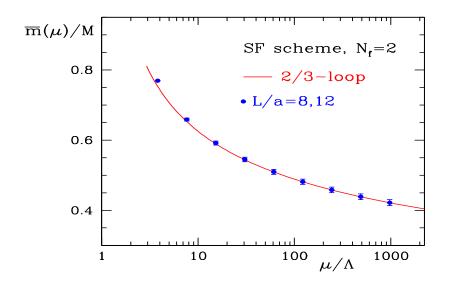
chiral perturbation theory result:

$$\delta = \frac{3g_A^2 m_\pi^2}{16\pi^2 F^2} \int dx \sum_n K_0 \left(Ln \sqrt{m_{N_0}^2 x^2 + m_\pi^2 (1 - x)} \right)$$

 m_{N_0} Nucleon mass in chiral limit

no free parameter! Leading order agrees with Lüscher formula

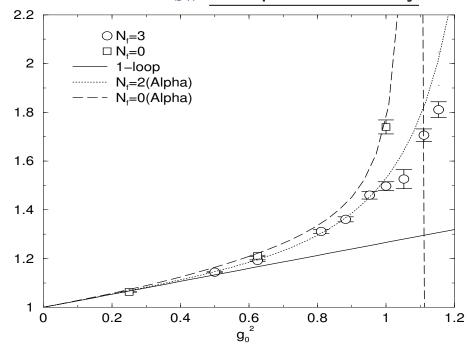
Running quark mass: status



- ullet \to averagered over $L=8 \to L=16$ and $L=12 \to L=24$
- perturbation theory works well (unfortunately!?)
- ullet point for smallest μ/Λ corresponds to large value of coupling $(L=\max)$
- scale still missing

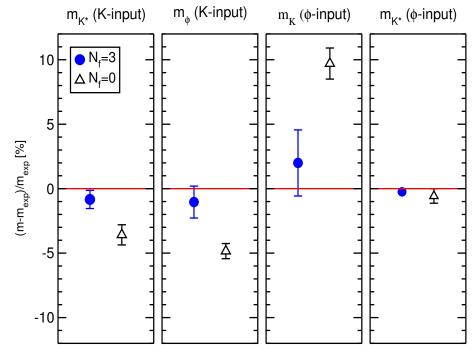
Towards $N_f = 3$ dynamical Wilson simulations

- → joint japaneses forces of CP-PACS and JLQCD collaborations
- \rightarrow RG improved gauge and O(a) improved Wilson fermion action
- ← phase transition
- \rightarrow determination of $c_{\rm sw}$ non-perturbatively

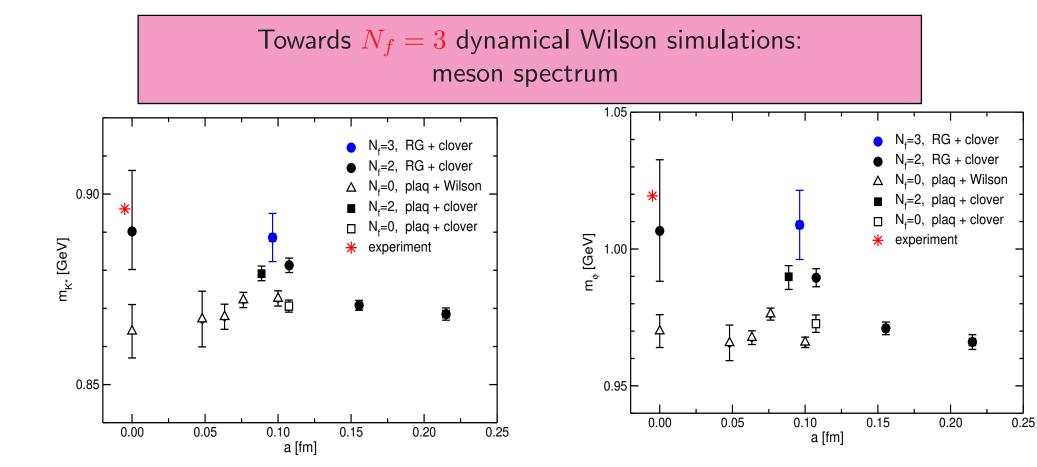


→ Schrödinger functional

Towards $N_f=3$ dynamical Wilson simulations: physical input



→ re-assuring: dynamical results can eliminate systematic uncertainty



My personal wishlist VII
Add improved staggered results

What was left out, with all my apologies

- domainwall fermions RBC
- localization in QCD Golterman, Shamir
- structure functions MIT, SESAM, QCDSF
- topological susceptibility Hart et.al.
- η' from low-lying eigenmodes SESAM, MIT

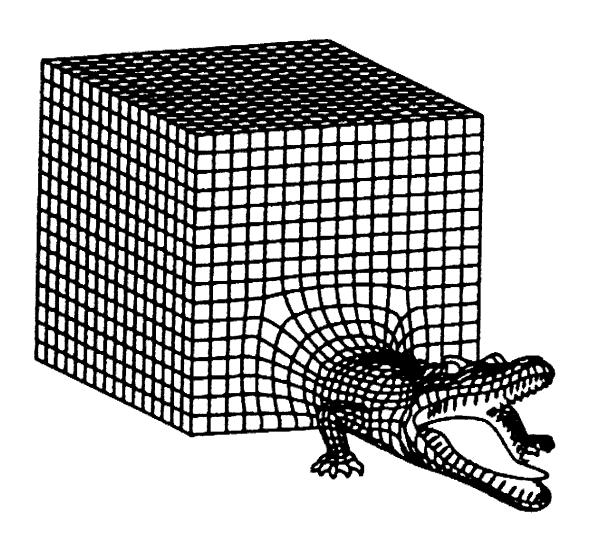
Conclusion

New powerful computers (apeNEXT, QCDOC, PC cluster, comm. supercomputers)

- * allow transition to serious dynamical fermion simulations
- ★ they are expensive machines that should be used wisely
 - → check that your lattice formulation of continuum theory is okay
 - → support and participate in ILDG to share configurations/propagators
 - → work hard on algorithmic improvements

what do we answer somebody coming with a really big machine and asks

- what action to choose
- what algorithm to employ



Conclusion

there are dangerous animals on the lattice that lurk in the dark
← found surprises in dynamical simulations

⇒ try to use always two actions, depending on your question

baryon spectrum, decay constants etc. (heavier quarks): improved staggred ↔ improved Wilson with (carefully selected) gauge action

very light quarks: chirally improved actions (truncated fixed point, domain wall with $L_s \ll 1$, hypercude,FLIC) \leftrightarrow actions with exact chiral symmetry (overlap, domain wall with $L_s \gg 1$)