Lattice Computations for High Energy and Nuclear Physics

Karl Jansen

- Progress in Lattice Field Theory computations
- The lattice and the Higgs boson
- Selected results from lattice QCD simulations
 - Baryon spectrum
 - The anomalous magnetic moment of the muon
- Challenges
 - Nucleon structure, light-by-light scattering \Rightarrow simulations at physical pion masses
- New directions
 - Nuclear physics
 - Search for the conformal window

Conclusion

Schwinger model: 2-dimensional Quantum Electrodynamics

(Schwinger 1962)

Quantization via Feynman path integral

$$\mathcal{Z} = \int \mathcal{D}A_{\mu} \mathcal{D}\Psi \mathcal{D}\bar{\Psi}e^{-S_{\text{gauge}}-S_{\text{ferm}}}$$

Fermion action

$$S_{\text{ferm}} = \int d^2 x \bar{\Psi}(x) \left[D_{\mu} + m \right] \Psi(x)$$

gauge covriant derivative

$$D_{\mu}\Psi(x) \equiv (\partial_{\mu} - ig_0 A_{\mu}(x))\Psi(x)$$

with A_{μ} gauge potential, g_0 bare coupling

$$S_{\text{gauge}} = \int d^2 x F_{\mu\nu} F_{\mu\nu} , \ F_{\mu\nu}(x) = \partial_{\mu} A_{\nu}(x) - \partial_{\nu} A_{\mu}(x)$$

equations of motion: obtain classical Maxwell equations

Lattice Schwinger model

introduce a 2-dimensional lattice with lattice spacing a

fields $\Psi(x)$, $\overline{\Psi}(x)$ on the lattice sites $x = (t, \mathbf{x})$ integers discretized fermion action

$$S \to a^2 \sum_x \bar{\Psi} \left[\gamma_\mu \partial_\mu - r \underbrace{\partial^2_\mu}_{\nabla^*_\mu \nabla_\mu} + m \right] \Psi(x)$$

 $\partial_{\mu} = \frac{1}{2} \left[\nabla_{\mu}^{*} + \nabla_{\mu} \right]$

discrete derivatives

 $\nabla_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x + a\hat{\mu}) - \Psi(x) \right] , \quad \nabla_{\mu}^{*}\Psi(x) = \frac{1}{a} \left[\Psi(x) - \Psi(x - a\hat{\mu}) \right]$

second order derivative \rightarrow remove doubler \leftarrow break chiral symmetry

Implementing gauge invariance

Wilson's fundamental observation: introduce Parallel transporter connecting the points x and $y=x+a\hat{\mu}$:

$$U(x,\mu) = e^{iaA_{\mu}(x)} \in U(1)$$

Partition functions (pathintegral) with Boltzmann weight (action) S

$$\mathcal{Z} = \int_{\text{fields}} e^{-S}$$

Physical Observables

expectation value of physical observables $\ensuremath{\mathcal{O}}$

$$\underbrace{\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int_{\text{fields}} \mathcal{O}e^{-S}}_{\text{fields}}$$

 \downarrow lattice discretization

01011100011100011110011

Lattice Field Theory in the 20th century: the Quenched Approximation

- → neglect internal quark-antiquark loops antiquarks in physical quantum processes
- \Rightarrow severe *truncation*

Quenched approximation

End of the "quenched area": need to take quark loops into account

Costs of dynamical fermions simulations, the "Berlin Wall"

see panel discussion in Lattice2001, Berlin, 2001

 χ PT (?)

point

formula
$$C \propto \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-z_{\pi}} (L)^{z_L} (a)^{-z_a}$$

 $z_{\pi} = 6, \ z_L = 5, \ z_a = 7$

"both a 10^8 increase in computing power AND spectacular algorithmic advances before a useful interaction with experiments starts taking place." (Wilson, 1989)

 \Rightarrow need of **Exaflops Computers**

Why are fermions so expensive?

need to evaluate

 $\mathcal{Z} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}\left\{D_{\text{lattice}}^{\text{Dirac}}\right\}\psi} \propto \det[D_{\text{lattice}}^{\text{Dirac}}]$

- bosonic representation of determinant

det $[D_{\text{lattice}}^{\text{Dirac}}] \propto \int \mathcal{D}\Phi^{\dagger} \mathcal{D}\Phi e^{-\Phi^{\dagger} \{D_{\text{lattice}}^{-1}\}\Phi}$

- need vector $X = D_{\text{lattice}}^{-1} \Phi$
- solve linear equation $D_{\text{lattice}}X = \Phi$

 D_{lattice} matrix of dimension 100million \otimes 100million \approx 12 \cdot 48³ \cdot 96 (however, matrix is sparse)

- number of such "inversions": O(100 1000) for one field configuration
- want: O(1000 10000) such field configurations

A generic improvement for Wilson type fermions

New variant of HMC algorithm (Urbach, Shindler, Wenger, K.J.) (see also SAP (Lüscher) and RHMC (Clark and Kennedy) algorithms)

- even/odd preconditioning
- (twisted) mass-shift (Hasenbusch trick)
- multiple time steps

- comparable to staggered
- reach small pseudo scalar masses $\approx 300 \text{MeV}$

Computer and algorithm development over the years

time estimates for simulating $32^3 \cdot 64$ lattice, 5000 configurations

- \rightarrow algorithm development very important
- \rightarrow typical architectures: **BG/L,P,Q, GPUs**

Strong Scaling

- Test on 72 racks BG/P installation at supercomputer center Jülich (Gerhold, Herdioza, Urbach, K.J.)
- using tmHMC code

Lattice QCD code on the K-computer: weak scaling

(K. Ishikawa in collaboration with T.Boku, Y.Kuramasi, K.Minami, Y.Nakamura, F.Shoji, D.Takahashi, M.Terai, A.Ukawa, T.Yoshie (RIKEN-Tsukuba Joint Research))

Releasing the quarks: 2 flavours

Simulation landscape

(thanks to G. Herdoiza)

Higgs-Yukawa sector on the lattice

CMS

ATLAS

The Higgs-Yukawa sector of the standard model

• the scalar theory

$$L_{\varphi}[\varphi] = \frac{1}{2} \partial_{\mu} \varphi_{x}^{\dagger} \partial_{\mu} \varphi_{x} + \frac{1}{2} m_{0}^{2} \varphi_{x}^{\dagger} \varphi_{x} + \lambda \left(\varphi_{x}^{\dagger} \varphi_{x}\right)^{2}$$

• the fermionic and Yukawa parts

 $(L_F + L_Y)[\bar{\psi}, \psi] = \bar{\psi}i\gamma_{\mu}\partial_{\mu}\psi + y_b\left(\bar{t}, \bar{b}\right)_L \varphi b_R + y_t\left(\bar{t}, \bar{b}\right)_L \tilde{\varphi}t_R + c.c.$ exact SU(2)_L chiral symmetry: $\gamma_5[L_F + L_Y)] + [L_F + L_Y)]\gamma_5 = 0$

$$\psi \to P_+ \psi + \Omega_L P_- \psi, \bar{\psi} \to \bar{\psi} P_+ \Omega_L^{\dagger} + \bar{\psi} P_-,$$
$$\phi \to \phi \Omega_L^{\dagger}, \phi^{\dagger} \to \Omega_L \phi^{\dagger}.$$

with $\Omega_L \in SU(2)$, projectors: $P_{\pm} = \frac{1 \pm \gamma_5}{2}$

Chiral invariant Higgs-Yukawa lattice action (Lüscher)

• the lattice fermionic and Yukawa parts

$$(L_F + L_Y)[\bar{\psi}, \psi] = \bar{\psi} D_{\rm ov} \psi + y_b \left(\bar{t}, \bar{b}\right)_L \varphi b_R + y_t \left(\bar{t}, \bar{b}\right)_L \tilde{\varphi} t_R + c.c.$$

• change from continuum:

$$- i\gamma_{\mu}\partial_{\mu} \to D_{\text{ov}} - P_{\pm} = \frac{1\pm\gamma_5}{2} \to \hat{P}_{\pm} = \frac{1\pm\hat{\gamma}_5}{2}, \hat{\gamma}_5 = \gamma_5 \left(1 - aD_{\text{ov}}\right)$$

• exact lattice $SU(2)_L$ chiral symmetry: $\gamma_5 D_{ov} + D_{ov} \gamma_5 = a D_{ov} \gamma_5 D_{ov}$ Ginsparg-Wilson relation overlap operator D_{ov} Neuberger

$$\psi \to \hat{P}_+ \psi + \Omega_L \hat{P}_- \psi, \bar{\psi} \to \bar{\psi} P_+ \Omega_L^\dagger + \bar{\psi} P_-$$

$$\phi \to \phi \Omega_L^{\dagger}, \phi^{\dagger} \to \Omega_L \phi^{\dagger}.$$

with $\Omega_L \in SU(2)$,

- upper bound from triviality
- lower bound from vacuum instability

unanswered questions

- upper bound:
 - \rightarrow coupling becomes strong, unclear whether perturbation theory is valid
- lower bound:
 - \rightarrow is vacuum instability an artefact of perturbation theory?
- effects of possible very heavy fermions
- \Rightarrow would like to have a first principles, non-perturbative calculation \rightarrow lattice

Lower and upper Higgs boson mass bounds (J. Bulava, P. Gerhold, J. Kallarackal, A. Nagy, K.J.)

- cut-off depence of lower and upper bounds
- allowed range of Higgs boson mass: $50 {
 m GeV} < m_H < 650 {
 m GeV}$ at cut-off $\Lambda = 1.5 {
 m TeV}$

• When does experimental scalar boson mass cut the lower bound? (in progress)

Quantum Chromodynamics on the lattice

Why Perturbation Theory fails for the Strong Interaction

 situation becomes incredibly complicated

- value of the coupling (expansion parameter) $\alpha_{\rm strong}(1 {\rm fm}) \approx 1$
- \Rightarrow need different ("exact") method
- \Rightarrow has to be non-perturbative

- Wilson's Proposal: Lattice Quantum Chromodynamics

Lattice Gauge Theory had to be invented

 \rightarrow QuantumChromoDynamics

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling. Wilson, Cargese Lecture notes 1976

The lattice QCD benchmark calculation: the spectrum ETMC ($N_f = 2$), BMW ($N_f = 2 + 1$)

progress in lattice QCD: Hadron Spectrum

The mass splitting of baryons

(BMW collaboration)

progress in lattice QCD ... and even Mass splitting

inclusion of

- isospin-splitting
- (quenched) electromagnetism

 \rightarrow proton-neutron mass difference from lattice computations

- electron carries spin \vec{S}
 - \Rightarrow magnetic moment $\vec{\mu}_m = -g_e \mu_0 \vec{S}$ $\mu_0 = e/4m_e$, e electric charge, m_e electron mass

 g_e : gyro-magnetic ratio of electron, $g_e = 2$ (Dirac)

• quantum fluctuations

 \Rightarrow anomalous magnetic moment $a_e = \frac{g_e - 2}{2}$

 $g_e = 2.00232$ theory (Schwinger, 1948)

 $g_e = 2.00238(10)$ experiment (Foley, 1948)

anomalous magnetic moment of muon a_{μ}

• nature has decided to have (at least) three families

electron $m_e = 0.511 \text{MeV}$, muon $m_\mu = 105.7 \text{MeV}$, tau $m_\tau = 1777 \text{MeV}$

muon anomalous magnetic moment

 $a_{\mu}^{\text{exp}} = 1.16592080(63) \times 10^{-3}$ $a_{\mu}^{\text{theory}} = 1.16591790(65) \times 10^{-3}$

tension between experiment and theory

 $a_{\mu}^{\exp} - a_{\mu}^{\inf} = 2.90(91) \times 10^{-9}$

- \Rightarrow larger than 3σ discrepancy
- uncertainty in theoretical calculation?
- signs of new physics?

• $\delta(a_l^{\text{newphysics}}) = m_{\text{lepton}}^2 / M_{\text{newphysics}}^2$

since $m_{\mu} \approx 2 \cdot 10^4 m_e$: a_{μ} much more sensitive to new physics

• a_{τ} experimentally hard to measure

Muon magnetic moment: a tension between theory and experiment

Do we control hadronic vacuum polarisation?

(Xu Feng, Dru Renner, Marcus Petschlies, K.J.; Lattice 2010)

- experiment: $a_{\mu,N_f=2}^{\rm hvp,exp} = 5.66(05)10^{-8}$
- lattice: $a_{\mu,N_f=2}^{\text{hvp,old}} = 2.95(45)10^{-8}$

(numbers are scaled to $N_f = 4$ in plot)

- \rightarrow misses the experimental value \rightarrow order of magnitude larger error
- have used different volumes
- have used different values of lattice spacing

lattice: simulations at unphysical quark masses, demand only

$$\lim_{m_{\rm PS}\to m_{\pi}} a_l^{\rm hvp, latt} = a_l^{\rm hvp, phys}$$

 \Rightarrow flexibility to define $a_l^{
m hvp, latt}$

standard definitions in the continuum

$$a_l^{\text{hvp}} = \alpha^2 \int_0^\infty dQ^2 \frac{1}{Q^2} \omega(r) \Pi_R(Q^2)$$
$$\Pi_R(Q^2) = \Pi(Q^2) - \Pi(0)$$
$$\omega(r) = \frac{64}{r^2 \left(1 + \sqrt{1 + 4/r}\right)^4 \sqrt{1 + 4/r}}$$

with $r = Q^2/m_l^2$

Redefinition of $a_l^{hvp,latt}$

redefinition of r for lattice computations

$$r_{\text{latt}} = Q^2 \cdot \frac{H^{\text{phys}}}{H}$$

choices

- r_1 : H = 1; $H^{\text{phys}} = 1/m_l^2$
- r_2 : $H = m_V^2(m_{\rm PS})$; $H^{\rm phys} = m_\rho^2/m_l^2$
- r_3 : $H = f_V^2(m_{\rm PS})$; $H^{\rm phys} = f_\rho^2/m_l^2$

each definition of r will show a different dependence on $m_{\rm PS}$ but agree by construction at the physical point

• for $m_{\mu}^2/m_{\rho}^2 << 1: a_{\mu}^{\text{hvp}} = \frac{4}{3} \alpha^2 g_{\rho}^2 m_{\mu}^2/m_{\rho}^2$

Progress: development of new, improved method

(X. Feng, M. Petschlies, D. Renner, K.J.)

- experimental value: $a_{\mu,N_f=2}^{\mathrm{hvp,exp}} = 5.66(05)10^{-8}$
- different volumes and lattice spacings, included dis-connected contributions
- many groups: JLQCD, Mainz, Brookhaven
- ultimate goal: direct calculation at physical point

light-by-light scattering

involves 4-point function

 $\Pi_{\mu\nu\alpha\beta}(q_1, q_2, q_3) = \int_{xyz} e^{iq_1 \cdot x + iq_2 \cdot y + iq_3 \cdot z} \left\langle j_\mu(0) j_\nu(x) j_\alpha(y) j_\beta(z) \right\rangle$

 j_{μ} electromagnetic quark current

$$j_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c$$

- need $O(V^3)$ momenta
- in turn: ${\cal O}(V^3)$ "inversions"

 \Rightarrow direct calculations not possible

A first attempt

(T. Blum, T. Izubuchi and collaborators)

- include electromagnetism in simulations
- problem reduces to difference of 3-point functions

• presently unclear, whether method will be sufficiently precise

Challenge II: hadron structure

• the puzzle with hadron structure

- misses experimental/phenomenological values
- \Rightarrow need simulations at physical point

Simulation at physical pion mass

- Lattice spacing: a = 0.1 fm
- Pion mass: $m_{\pi} = 140 \text{MeV}$
- Suppression of finite size effects: $L \cdot m_{\pi} > 5$
- Requirement
 - $L \approx 5 \text{fm} \rightarrow 48^3 \cdot 96$ lattice (\leftarrow present standard)
 - for $a = 0.05 \text{fm} \rightarrow 96^3 \cdot 192$ lattice
 - grows of simulation cost $\propto a^{-6}$

Nuclear physics from Lattice QCD

start with Schrödinger equation

$$[H_0 + V(x)] \phi_k(x) = \epsilon_k \phi(x)_k$$
$$\epsilon_k = \frac{k^2}{2\mu}; \ \mu = m_N/2; \ H_0 = \frac{-\nabla^2}{2\mu}$$

Reversing this: knwoing wave function \rightarrow compute potential

$$\left[\epsilon_k - H_0\right]\phi_k(x) = \int d^3y V(x, y)\phi_k(y)$$

Wavefunction from the lattice

 $\phi_k(r) = \langle 0 | N(x+r)N(x) | NNW_k \rangle$

 $W_k = \sqrt{k^2 + m_N^2}$

partial wave in infinite volume:

$$\phi_k^l \to A_l \frac{\sin(kt - l\pi/2 + \delta_l(k))}{kr} \text{ for } r \to \infty$$

Strategy:

- compute wave function within lattice QCD in finite volume
- determine potential U(x)in <u>finite volume</u>
- use this potential to solve Schrödinger equation in infinite volume
- determine scattering phase or binding energy
- \Rightarrow study nuclear physics, neutron stars, supernovae, ...

Nuclear physics from Lattice QCD

(Sinya Aoki (U. Tsukuba) Bruno Charron (U. Tokyo) Takumi Doi (Riken) Tetsuo Hatsuda (Riken/U. Tokyo)

Yoichi Ikeda (TIT) Takashi Inoue (Nihon U.) Noriyoshi Ishii (U. Tsukuba) Keiko Murano (Riken) Hidekatsu Nemura (U. Tsukuba) Kenji Sasaki (U. Tsukuba) Masanori Yamada (U. Tsukuba))

(Ishii-Aoki-Hatsuda, PRL90(2007)0022001)

 \rightarrow paper has been selected as one of 21 papers in Nature Research Highlights 2007.

The challenge and the prospect

- in-elastic scattering
- resonances
- extension to weak interactions
- \Rightarrow need the K-Computer

A new game: looking for the conformal window

QCD with many flavors : Sketchy view of the phase diagram

conformal window: existence of dilaton: scalar particle

Higgs boson imposter?

Scale dependence of coupling

$$\mu \frac{\partial}{\partial \mu} \bar{g}^2(\mu) \equiv \beta(\bar{g}^2(\mu)) = \frac{2}{4\pi^2} \left(11 - \frac{2}{3}N_f \right) + \cdots$$

• for $N_f > 16$: β -function changes sign \Rightarrow new fixed point

Large activity in lattice community

The lattice offers much more ...

- Flavour physics, quark masses (b quark), decay constants, α_{strong}
- CKM matrix elements, B_K
- non-zero temperature physics
- topology and chiral symmetry breaking
- charm physics

... and needs this at the physical point

Summary

- Progress in solving QCD with lattice techniques
 - dramatic algorithm improvements
 - new supercomputer architectures
 - theoretical/conceptual developments
- offers to compute many physical quanties, showed
 - non-perturbative Higgs boson mass bounds
 - baryon spectrum
 - leading order hadronic contribution to muon anomalous magnetic moment
- challenges discussed (there are many more)
 - light-by-light contribution
 - nucleon structure puzzle
- simulations in physical situation: full first two generations at physical quark masses
- new directions
 - nuclear physics
 - conformal theories

