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Abstract

In this report we study the path integral as both a theoretical and numerical approach to Quantum
Mechanics. We derive the formulation of the path integral on a discrete time lattice and we illustrate
this with explicit calculations of the propagator for both the free particle and the Harmonic Oscillator.
Furthermore, we use the discretised form of the path integral to perform numerical calculations of several
observables for the Harmonic Oscillator using the Hybrid Monte-Carlo algorithm (HMC). We perform
a detailed study of the autocorrelations, after which we find clear agreement between our numerical
calculations and the exact results.
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1 Introduction

Since Richard Feynman as a young graduate student at Princeton University in 1948 first discovered the path
integral method to calculate propagators1 in Quantum Mechanics, it has turned out to be a very powerful
tool for numerical calculations, in QED and QCD especially. Furthermore the path integral formalism
has the advantage that it makes the symmetries of the considered problem manifest, as those symmetries
are described by an invariance of the Lagrangian and the path integral formalism allows to bypass the
construction of the Hamiltonian.2

Therefore in this report we will proceed as follows. First of all we will try to motivate the canonical form
of the path integral. Then we will introduce the discretized form of the path integral in order to calculate
the propagator for the Harmonic Oscillator using the method of Fourier transforms. In a second part we
will present the Hybrid Monte-Carlo algorithm (HMC), a numerical method we have used to solve the path
integral. We will show the results we have obtained for some observables, 〈x2〉 and the ground state energy,
by performing our numerical simulations.

2 Theoretical foundations

2.1 Path integrals in the continuum

In Quantum Mechanics physical entities have an observable probability to be found in a given state at a
given time. These states can be described by wavefunctions Ψ(x, t) obeying the Schrödinger equation

H|Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉. (1)

The solutions of this time-dependent Schrödinger equation can be factorized into a stationary part |Ψ(0)〉
fulfilling the stationary Schrödinger equation H|Ψ〉 = E|Ψ〉, whereas the time evolution is described by the
time evolution operator U(t) = e−iHt/~, with |Ψ(t)〉 = U(t)|Ψ(0)〉.

The quantum mechanical amplitude for a particle to propagate from a position xa at time ta to a position
xb at time tb = ta + T can be described in exactly the same manner, namely by considering the propagator:

K(xb, xa, T ) = 〈xb|e−iHT/~|xa〉 (2)

The probablity P for the particle to propagate from xa to xb is the absolute square of the amplitude
P (b, a) = |K(xb, xa, T )|2. As observed by Feynman, the amplitude itself is just the sum of the contributions
of all the possiblities to propagate from xa to xb

K(xb, xa, T ) =
∑

paths
A[x(t)] (3)

where the sume over paths includes all paths that start at xa and end at xb a time T later and we assume
A, according to the superposition principle, to be a phase factor A[x(t)] = eiΦ[x(t)].

In the classical limit only the classical path will contribute. This classical path satisfies the Principle of
Minimum Action:

δ

δx(t)
(S[x(t)])|x=xcl = 0. (4)

1Quantities describing the probability of propagation from one space-time point to another.
2See [3] p.306 f.
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On the other hand we expect by the method of stationary phase:

δ

δx(t)
(Φ[x(t)])|x=xcl = 0 (5)

Therefore it is reasonable to assume that each contribution of a path has a phase depending only on the
action S, which in the limit ~→ 0 gives the classical path according to the stationary phase approximation.
Finally we get

Φ[x(t)] = e
1
~S[x(t)] (6)

and the propagator is written as follows

〈xb|e−iHT/~|xa〉 =
∫
Dx(t)e

i
~S[x(t)] (7)

where
∫
D(t) =

∑
paths. One can show that this propagator solves the Schrödinger equation.

2.2 Path integrals on the lattice

In order to perform numerical calculations with the path integral, we must provide a mathematical rigorous
definition. We do so by introducing a time-lattice with spacing a = T

N , where N is the number of lattice
points:

K(xb, xa, T ) = 〈xb|e−iHT/~|xa〉 = 〈xb|(e−iHa/~)N |xa〉 (8)

Now we insert a complete set of intermediate states between each of these factors, 1 =
∫
dxk|xk〉〈xk| and

obtain:

K(xb, xa, T ) = 〈xb|e−iHT/~|xa〉 =

(
N−1∏
i=1

∫ +∞

−∞
dxi

)
N−1∏
i=0

〈xi+1|e−iHa/~|xi〉 (9)

where we have defined x0 = xa and xN = xb. The Hamiltonian H is a function of momentum and position,
H = H(x, p), and in general we cannot commute x and p in order to get a resulting action which is symmetric
in nearest neighbour pairs xi and xi+1. But if H does not contain products of x and p we can do so up to
first order in a. One way to show this is the Baker-Campbell-Hausdorff formula. But it is easier to see by
developing in orders of a and then splitting the parts of H, which depend only on x and p:

〈xi+1|e−iaH/~|xi〉 ≈ 〈xi+1|1− iaH/~ +O(a2)|xi〉 (10)

We thus find after insertion of a complete set of momentum eigenstates:

〈xi+1|H(q, p)|xi〉 = 〈xi+1|
Hq(xi+1)

2
+Hp(p) +

Hq(xi)
2
|xi〉 =

∫
dpi
2π~

1
2

(H(xi+1, pi) +H(xi, pi))ei
pi(xi+1−xi)

~

(11)
And going back to exponential form we get the resulting expression:

K(xb, xa, T ) =

(∏
i

∫
dxi

∫
dpi
2π~

)
e
i
~a
(∑

i

pi(xi+1−xi)
a − 1

2 (H(xi+1,pi)+H(xi,pi))
)

(12)

where we see that xi+1−xi
a is just the discretized time derivative of the position, ẋ, and therefore we can

identify the Legendre transform of the Hamiltonian L(x, ẋ) = pẋ − H(x, p). Overall we get a descritised
action S =

∫
Ldt = a

∑
i L(xi+1+xi

2 , xi+1−xi
a ).

2.3 Euclidean path integral

As one may have noticed from the representation of the kernel, there is a very close connection between
classical statistical mechanics and quantum theory, which is revealed by Feynman’s path integral approach.
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This connection opens up the possibility to use numerical methods that are well known from statistical
mechanics, the Metropolis method, for example. In this subsection we will therefore try to establish this
connection by performing a Wick rotation in the complex plane, going from a complex Minkowski to an
Euclidean path integral.

When we compare the kernel for propagation, K(xb, xa, T ) = 〈xb|e−iHT/~|xa〉, which we have introduced
in Eq. (2), to the partition function of statistical mechanics

Z =
∫ ∞
−∞

dx〈x|e−βH |x〉 = Tr[e−βH ] (13)

we immediately see that the partition function is just an integral over the kernel, namely Z =
∫∞
−∞ dxK(x, x, T )

for an imaginary time T = −iβ~. This clearly motivates the definition of an Euclidean path integral

Zfi = 〈xf |e−HT/~|xi〉 =
∫
Dxe−SE [x]/~ (14)

where we have Wick rotated by π
2 in the complex plane, from real to imaginary time τ = it, leading us to

an Euclidean action

SE [x] =
∫ T

0

dτ

[
1
2
m

(
dx

dτ

)2

+ V (x)

]
(15)

with the boundary conditions x(0) = xi and x(T ) = xf .

On the lattice this action may again be approximatively discretised to read:

Slat[x] =
N∑
i=0

a

[
1
2
m

(xi+1 − xi)2

a2
+
V (xi+1) + V (xi)

2

]
(16)

From the preceding definition of the partition function, which is Z =
∫
dxidxfδ(xi − xf )Zfi, one may

immediately verify that e−S[x]/~ in the case of the Euclidean path integral is just the Boltzmann factor,
where ~ is the temperature. That means, as the reader may recall from statistical mechanics, that we can
write the expectation value of any observable in terms of a path integral over these Boltzmann factors:

〈O〉 =
∫
DxO(x)e−S[x]/~∫
Dxe−S[x]/~ (17)

3 Analytic examples

3.1 The Free Particle

Following the discussion in Sec. 2.2, we now consider the simplest system, the free particle. The Lagrangian
will be of the form L(x, ẋ) = m ẋ2

2 and therefore the kernel can be written as

K(xb, xa, T ) =

(
1
A

∏
i

∫
dxi
A

)
ei
m
2~
∑
i(
xi+1−xi

a )2
(18)

with the normalization constant A = ( 2πi~a
m )1/2. This result can be obtained by completing the square for

the Hamiltonian H = p2

2m and integrating the momenta3.

3See [1].
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Position integrals may be evaluated as well by completing the square starting with the first integral∫ +∞

−∞

(
2πi~a
m

)− 2
2

e
m

2i~a [(x2−x1)2+(x1−x0)2]dx1 =
(

2πi~(2a)
m

)− 1
2

e
m

2i~(2a) (x2−x0)2

(19)

The derivation is given in App. [A]. We finally get the kernel:

K(xb, xa, T ) = K(xN , x0, T ) =
(

2πi~T
m

)− 1
2

e
m

2i~T (x0−xN )2
(20)

3.2 The Harmonic Oscillator

As the Harmonic Oscillator is most probably the physical model with the widest range of applications it is
tempting to try to solve it’s path integral. The Lagrangian for the Harmonic Oscillator is given to be of the
form:

L(x, ẋ) =
m

2
ẋ2 − mω2x2

2
(21)

Therefore we consider the kernel:

K(xb, xa, T ) =
∫ b

a

e
i
~
∫ tb
ta

[m2 (ẋ2−ω2x2)dt]Dx(t) (22)

In order to solve this path integral we can, as we already know the classical trajectory, split the path
x(t) = xcl + y(t) into the classical part and a deviation y(t) from the classical path which must vanish at
the boundaries, i.e. y(0) = y(T ) = 0.

Now if we try to calculate the action functional S[x(t)] in terms of parts, S[xcl(t), y(t)], we find that it
is separable, i.e. S[xcl(t), y(t)] = Scl + S[y(t)], because mixed terms, after integration of the Lagrangian
considered here, vanish for the boundary conditions.
Accordingly we can write our propagator as

K(xb, xa, T ) = F (T )e
i
~Scl (23)

where Scl is the classical action and the factor

F (T ) =
∫ b

a

e
i
~
∫ T
0 [m2 (ẏ2−ω2y2)dt]Dy(t) (24)

only depends on the relative time difference T.

We derive the classical action for the Harmonic Oscillator in App [B]. The result for that is:

Scl =
∫ tb

ta

dt
m

2
[ẋ2 − ω2x2] =

m

2
ω

sinωT
[(x2

a + x2
b) cosωT − 2xaxb] (25)

This gives us the following (intermediate) form of the propagator:

K(xb, xa, T ) = F (T )e
imω

2~ sinωT [(x2
a+x2

b) cosωT−2xaxb] (26)

But in order to determine the factor F (T ) we still need to evaluate the path integral for the fluctuations y(t).
We do so by again introducing a time lattice y(tn) = yn for the action S[y(t)] of the Harmonic Oscillator
according to the method described in Sec. 2.2. This procedure leads to an action

i

~
S[y(t)] =

N∑
n=0

(
im(yn+1 − yn)2

2a~
−
iamω2(y2

n+1 + y2
n)

4~

)
(27)
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and to the following path integral

F (T ) =
( m

2π~ia

)N/2(N−1∏
i=1

∫ +∞

−∞
dyi

)
exp

(
N∑
n=0

im(yn+1 − yn)2

2a~
−
iamω2(y2

n+1 + y2
n)

4~

)
(28)

which we are going to solve by performing the Fourier transformation

yn =
1√
N

N−1∑
m=1

sin
(πnm

N

)
Am (29)

according to the boundary conditions given above.

We show the calculations in App. [C]. We get:

N−1∑
n=0

y2
n =

∑
n

1
2
A2
n (30)

N−1∑
n=0

y2
n+1 =

∑
n

1
2
A2
n(1 + C(n)/N)

N−1∑
n=1

(yn+1 − yn)2 =
∑
n

A2
n2 sin2

(πm
2N

)
This finally gives us the Fourier transform of the action

i

~
S[y] =

N∑
n=1

[
im

2a~
A2
n2 sin2

( πn
2N

)
− iamω2

4~
A2
n

]
(31)

and accordingly after transformation of variables the path integral

F (T ) = J

∫
DA · e

∑N
n=1[ im2a~A

2
n2 sin2( πn2N )− iamω2

4~ A2
n] (32)

where J is the Jacobian J = | ∂yn∂Am
| = | 1√

N
sin(πnmN )| =

√
2

1−N
of the transformation of variables. Thus,

with the appropiate normalization A, we have:

F (T ) =
J

A

N−1∏
n=1

∫
dAn
A

e
∑N
n=1[ im2a~A

2
n2 sin2( πn2N )− iamω2

4~ A2
n] (33)

which is just a Gaussian integral that we can solve easily with A =
√

2π~ia
m to be equal to:

F (T ) = J

(√
m

2πi~a

)N (√
2π~ia
m

)−N−1
2 N−1∏

n=1

[
2 sin2

( πn
2N

)
− ia2mω2

2

]− 1
2

(34)

Now, in the next step, we will factorize the sin and approximate it in the limit of N →∞, i.e. a2ω2

4 sin2( πn2N )
=

(ωTπn )2, which results in:

F (T ) = J

√
m

2πi~a

N−1∏
n=1

[
2 sin2

( πn
2N

)(
1−

(
ωT

πn

)2
)]− 1

2

(35)

If we use
∏∞
n=1(1− x2

π2n2 ) = sin x
x then, we get:

F (T ) = J

√
m

2πi~a

√
ωT

sinωT

[
N−1∏
n=1

1
2

(
2 sin

( πn
2N

))2
]− 1

2

(36)
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which by rearranging the infinite product with
∏N−1
n=1 4 sin2( πn2N ) = 1

2

∏2N−1
n=1 2 sin( πn2N ) gives us

F (T ) = J

√
m

2πi~a

√
ωT

sinωT

√
2
N−1

[
1
2

2N−1∏
n=1

(
2 sin

( πn
2N

))]− 1
2

(37)

where we will now use
∏N−1
n=1 2 sin(nπN ) = N and Na = T to get:

F (T ) = J

√
mω

2πi~ sinωT

√
N
√

2
N−1

(
2N
2

)− 1
2

(38)

So with the Jacobian given above we get the final result

F (T ) =
√

mω

2πi~ sinωT
(39)

which we can combine with the result for the classical action to get the kernel of the Harmonic Oscillator:

K(xb, xa, T ) =
√

mω

2πi~ sinωT
e

imω
2~ sinωT [(x2

a+x2
b) cosωT−2xaxb] (40)

4 Numerical methods

4.1 HMC algorithm

If we want to calculate the expectation value of an observable numerically, one standard way is the Monte-
Carlo method. The basic idea is to draw random numbers distributed according to our Boltzmann factor
e−S[x]/~ with a probability distribution:

P (xk)Dx =
e−S[x]/~Dx∫
Dxe−S[x]/~ (41)

Once we have generated sequences of random numbers (xk)kεN fulfilling this probability distribution, the
expectation value of our observable O, turns out to be as simple as a sum:

〈O〉 =
1
N

N∑
k=1

O(xk) (42)

For N =∞ this would provide the exact value for 〈O〉. Of course, in practise N is always finite and we only
obtain some estimate of 〈O〉 which is correct within a certain error. The computation of a reliable error is
one of the most important problems for the numerical simulations and we will discuss it a lot below.

Now in Statistical Mechanics there are well known methods to achieve such probability distributions.
One of these methods is called the Hybrid Monte-Carlo algorithm (HMC).

After this short motivation let us consider how we can obtain the HMC algorithm, at least in a heuristic
way. We start a stochastic differential equation, the Langevin equation (a famous description of Brownian
motion),

π̇ = −γπ + η(t) (43)

with π being the momentum of a particle driven by a random force η with the Gaussian noise properties
〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′) and γ is a friction coefficient.
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The probability to find a particle at time t with a momentum π is given by the solution of the Fokker-Planck
equation, which is an equivalent form of the Langevin equation for the probability:

∂

∂t
P (π, t) = γ

∂

∂π
(πP ) +

1
2
∂2P

∂π2
(44)

Moreover if we consider Brownian motion in an external field F = − ∂
∂xV (x) we are led to the following

equations:
mẋ = π (45)

π̇ = −γπ + F + η(t) (46)

This system of stochastic differential equations is again equivalent to a generalized Fokker-Planck equation
for the probabilities, the Kramer’s equation:

∂

∂t
P (x, π, t) + π

∂P

∂x
+ F (x)

∂P

∂π
= γ

∂

∂π
(πP ) +

1
2
∂2P

∂π2
(47)

The solution of the Kramer’s equation in the limit of large time scales leads to the desired exponential
probability distribution:

limt→∞P (x, π, t) ∝ e−
γ
2 π

2
e−V (x) (48)

Thus we obtain for large times a stationary solution and, moreover, this solution is even unique.

Let us compare this now to the expectation value of our operator

〈O〉 =
∫
DxO(x)e−S[x]/~∫
Dxe−S[x]/~ =

∫
Dx
∫
DπO(x)e−

1
2π

2−S[x]/~∫
Dx
∫
Dπe− 1

2π
2−S[x]/~ (49)

where we have just added a Gaussian integral factor of one, set γ = 1 and let the action play the role of the
potential in Eq. (46).

Thus we may consider a 1-dimensional Hamiltonian:

H =
1
2
π2 + S[x(t)] (50)

This Hamiltonian depends on virtual momenta π(τ), which are Gaussian distributed as functions of a virtual
Monte-Carlo time τ :

〈π(τ)〉 = 0 (51)

〈π(τ)π(τ ′)〉 = δ(τ − τ ′) (52)

Let us now evolve the system in this virtual Monte-Carlo time according to the set of stochastic differential
equations

ẋ = π (53)

π̇ = − ∂

∂x
S (54)

which we will refer as Hamilton’s equations. Then, in analogy to the case of the Kramer’s equation, in this
virtual Monte-Carlo time our probability distribution converges to the desired form, namely the Boltzmann
factor e−S[x]/~. Thus our ingredients for the algorithm are the solutions of Hamilton’s equations and to
generate π as Gaussian distributed random numbers. After this, we are sure that we obtain the desired
probability distribution for the final positions and momenta.

Numerically we may solve Hamilton’s equations in a discretized form, using the so called leapfrog scheme
(where we use alternating time steps of for positions and momenta), which is time-invariant and cancels
some of the discretization errors in δτ , which denotes the non-zero step size in the numerical integration.
In a first step we create the starting values for the momenta at τ = 0, which are a Gaussian distributed
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random number for π(t)[0] and a flat random distribution for x(t)[0]. The second step is the integration of
Hamilton’s equations via the leapfrog scheme

π(t)
[
δτ

2

]
= π(t)[0]− δτ

2

[
∂

∂x
S

]
x[0]

(55)

x(t) [δτ ] = x(t)[0] + π(t)
[
δτ

2

]
δτ (56)

π(t)
[
3
δτ

2

]
= π(t)

[
δτ

2

]
− δτ

[
∂

∂x
S

]
x[δτ ]

(57)

etc. Moreover, in a third step, we can compensate for the discretization error δτby inserting a Metropolis
like accept/reject step, i.e. we accept the new position configuration [xend, πend] only with an acceptance
probability:

Paccept = min(1, eH(xin,πin)−H(xend,πend) (58)

This acceptance probability is realized by creating a random number rε(0, 1]: if e∆H < r then we accept,
otherwise we do not. We create the next random values, by starting with the preceding random value,
which we put into Hamilton’s equations and so on, until we have created the desired number of the random
distributed [xk, πk].

4.2 Simulation

The above sketched algorithm has been implemented and used for all our simulations. Now we are going
to give a brief explanation of the input parameters, which are important to understand how we actually
run the program and what we will do afterwards in our numerical analysis. The input parameters for the
simulations are:

Physical parameters:
m: mass of the Harmonic Oscillator.
ω: frequency of the Harmonic Oscillator.
~: reduced Planck constant. We will set this to 1 for simplicity.
Lattice parameters:
a: lattice spacing.
N : number of lattice points.
Note: aN = T , where T is the physical time of the problem.
Simulation and algorithm parameters:
seed: changing this number selects different sequences of the random numbers that are generated.
Nsteps: number of steps that the algorithm makes to move from one complete trajectory (involving all
lattice points) to a new one on which, in principle, measurements can be performed.
δτ : size of the steps that the algorithm makes to increment the values of the position x and the momentum
π, to move from one trajectory to the next one.
Note: We will fix δτNsteps = 1. These two parameters affect the simulation about accepting or rejecting
trajectories. Setting δτ smaller and Nsteps bigger increases the acceptance rate, but the simulation takes
longer to run.
Ntraj: number of trajectories to be generated and considered.
Nskip: number of trajectories to be skipped. This means that the algorithm will generate Nskip trajectories
before using one for measurements. In practise this means that only every Nskip trajectory is written to
disk.
Note: The total number of trajectories that the program generates is Ntraj × Nskip, but only Ntraj are
used to compute the output quantities. The number of output trajectories will always be Ntraj.

Let us explain what the algorithm does, including now the parameters. Each trajectory may also be
called a configuration, in analogy with field theoretical models. In each configuration we have N numbers,
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which are the positions of the lattice points. So we start at one initial configuration which has x(t) = 0 at all
times t on the lattice. Then we generate N random numbers for the momentum so as we can move to another
configuration. At this point we solve the Hamiltonian equations, where the potential in the hamiltonian is
our action for the Harmonic Oscillator, as shown in Eq. (50). We do this numerically, making Nsteps of
length δτ . In the new configuration, we compute the action. If the action is decreased compared to the
action for the previous configuration, we keep the new configuration; otherwise we reject it and move back to
the previous configuration (we would like to achieve minimum action, as stated in the Principle of Minimum
Action). We go on in this way, generating configurations up to Ntraj number of them. Finally, we compute
the expectation value of our observable as shown in Eq. (42) i.e. averaging its value over all configurations.

5 Results

In the first set of simulations we performed, we made ourselves familiar with the simulation program, the
algorithm parameters and the output of the quantities of interest. We ran the simulation for different values
of the parameters, i.e. the lattice spacing a and the number of discrete time points N . We set ~ = 1 always,
and choose the lattice spacing a and the number of lattice points N so as to have the total time extent
T = 10 (remember that aN = T ). Additionaly, we always want the acceptance rate of the trajectories to
be bigger than 90%, in order to get good results. A large acceptance rate can be achieved by making the
step size dτ small enough while keeping the trajectory length dτNsteps = 1 where Nsteps is the number of
steps in the leapfrog integration. We observed that making the lattice spacing smaller while keeping dτ fixed
leads to a significant decrease of the acceptance rate. Therefore, when decreasing the values of the lattice
spacing, also the values for dτ must be decreased and the number of steps Nsteps increased.

5.1 Autocorrelation effects

After having tuned the values of dτ for each value of the lattice spacing we used, we can now performed
some simulations and look at the physical results. To do that, the simulation program provides as an output
xτMC (t), i.e. we get a value of x for each trajectory, denoted by τMC , and for each lattice point, denoted
by t (which is actually the time in lattice units, as aN = T ). In this way, we can store all trajectories and
calculate several different observables after the actual simulation.

We first concentrated on the values of x2(τMC) measured on each trajectory τMC . Producing many
trajectories, we can determine the expectation value of 〈x2〉, which is the quantity we are going to study:

〈x2〉 =
1

Ntraj

∑
Ntraj

x2(τMC) (59)

In the same way, the error of 〈x2〉 can be calculated by the standard error formula

σx2 =

√
〈(x2 − 〈x2〉)2〉

Ntraj
(60)

After some previous trials, we decided to fix the following parameters for the rest of our work: the physical
parameters m = 1.2 and ω = 0.5; the number of trajectories Ntraj = 100000, which we consider big enough
so as to obtain good statistics. Another important parameter for the simulations is the number Nskip of
skipped trajectories between measurements. At this point, we are as well setting Nskip = 1, i.e. every
trajectory generated in the Monte-Carlo process is used for measurements.

Some examples of the outcomes of the runs performed in the above described setup are plotted in Fig. 1,
which shows the Monte-Carlo time history of 〈x2〉 for two values of the lattice spacing. Averaging x2(τMC)
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over these Monte-Carlo histories, we can obtain its expectation value according to Eq. (59) and its error from
Eq. (60). At this point, we want to compare the values of 〈x2〉 with the exact values at each of the different
lattice spacings we have simulated. We can calculate these exact values by the formula in the Creutz and
Freedman paper [2]

〈x2〉theory =
~

2mω
√

1 + a2ω2

4

(
1 +RN

1−RN

)
(61)

R = 1 +
a2ω2

4
− aω

√
1 +

a2ω2

4
which gives the explicit dependence on the lattice a and the number of lattice points N .

Our first analysis led us to some funny results. We show them in Tab. 1. As we can see, we do not obtain
a good agreement between the exact theoretical value and the outcome from the simulation. In particular,
we find that the numerical values are inconsistent within the errors, which are very small.

a < x2 >theory < x2 > error
0.8 0.828609 0.823 0.0018
0.5 0.838264 0.837 0.0017
0.2 0.843609 0.856 0.0017
0.1 0.844382 0.850 0.0017
0.08 0.844474 0.840 0.0017
0.05 0.844575 0.831 0.0017
0.02 0.844629 0.824 0.0016
0.01 0.844637 0.841 0.0016
0.008 0.844638 0.846 0.0017
0.005 0.844639 0.869 0.0020
0.002 0.844639 0.763 0.0014
0.001 0.844639 0.830 0.0015

Table 1: Comparison of 〈x2〉 with naive errors.

We had to find a way to explain this discrepancy. If we look again at our time histories in Fig. 1 we
can appreciate that for a = 0.005 clear bunches of data appear which do not differ much. This means that
the trajectories are strongly correlated, and this led us to wrong results, because it reduces the amount of
independent data. If we want to get right results for our observable we need more statistics, i.e. to run more
trajectories in the simulation. Moreover, our formula for the error computation in Eq. (60) assumes that
the data are uncorrelated. Given the strong correlation between the trajectories we observe, this formula
can therefore not be applied and the error bars given in Tab. 1 are underestimated. We see this so-called
autocorrelation between trajectories as well for a = 0.05, where the bunches are narrower but they still exist.

The way to fix this is to determine the autocorrelation time τint. This parameter gives us the number of
trajectories which are correlated, i.e. the width of the bunches. Once we have determined τint, we have two
ways to proceed to solve the problem described above. The first way is to compute the error by taking the
autocorrelation time into account. The second way is to set the value of skipped trajectories Nskip > τint
in which case we will have uncorrelated measurements and the naive error formula can be applied. We will
discuss this later in more detail.

An important observation is that the autocorrelation time is dependent on the lattice spacing as can
already be seen in Fig. 1 at least on a qualitative level. Theoretically we expect that τint ∼= 1/a. This result
comes from the form of the discretized action for the Harmonic Oscillator that we are studying. In Eq. (31)
in Sec. 3.2 we have the form of the action on the lattice. The autocorrelation time is inversely proportional
to the action kernel in momentum space. Therefore the longest autocorrelation time comes from the slowest
mode which is the one at momentum zero. Hence, the autocorrelation time is given by τint = 4~

mω2a
1
A2
n

which
leads to the 1/a law.
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Figure 1: Time histories for a=0.005 and 0.05. We can observe autocorrelations between trajectories, higher
for a = 0.005 than for a = 0.05.

To determine the autocorrelation time or “integrated autocorrelation time” we use the autocorrelation
function, which shows an exponential decay with a rate that is given by τint:

Γx2(dτMC) =
〈
(x2(τMC)− 〈x2〉)(x2(τMC + dτMC)− 〈x2〉)

〉 ∼= e−dτMC/τexp (62)

The autocorrelation time can be now obtained by just fitting this autocorrelation function to an exponential.
Instead of this one may also compute some effective autocorrelation time τeff given by−1/ ln

(
Γx2 (τMC+1)

Γx2 (τMC)

)
=

τeff , which gives a plateau for some region in dτMC . A very simple way to estimate the error is then to sum
the biggest and the smallest value within the plateau and divide it by two. To be more accurate, we choose
however the whole plateau region and fit in this region the exponential and the plateau. All of this is shown
in Fig. 2.

Making use of this strategy, we obtain the autocorrelation time for every value of the lattice spacing we
have performed simulations for. This is shown in Tab. 2.

a τint error
0.8 3.9 0.6
0.5 6.6 1.3
0.2 21 10
0.1 26 4
0.08 36 6
0.05 51 10
0.02 130 20
0.01 210 20
0.008 350 40
0.005 690 110
0.002 900 200
0.001 1600 400

Table 2: Autocorrelation time for the lattice spacing we performed.

If we again look at the last plot in Fig. 2, we can see that the scaling τint ∼= 1/a is well reproduced. For
big values of the lattice spacing, we see that the straight line is completely consistent with the data. For
small lattice spacings we see some deviation. However, we are assuming that the variation in the plateau
region corresponds to just one standard deviation σ for the uncertainty (the error), but we could also take
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Figure 2: Calculation of the autocorrelation time and the error. While the exponential fit gives us a precise
value for the autocorrelation time, the plateau method serves as a useful estimate of the error. We also show
the scaling of the autocorrelation time with the lattice spacing. As can be seen from the graph, it follows
the expected 1/a law.
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2σ or even 3σ, as statistically reasonable. Within these 2 or 3 standard deviation bands, all of our results
for τint would fall on the line (actually 2σ would be enough). Hence we can assume that our error study is
correct and that the autocorrelation time is determined with acceptable accuracy.

5.2 〈x2〉 results

Now that the autocorrelation time is known, we can fix the discrepancies for 〈x2〉 in two different ways.
Firts we use this autocorrelation time to recalculate the error from the naive estimation. When the data is
correlated, we have to include a correction in Eq. (60) that depends on the autocorrelation time, as follows:

σx2 =

√
〈(x2 − 〈x2〉)2〉

Ntraj

√∑
τMC

Γx2(dτMC)
Γx2(0)

=

√
〈(x2 − 〈x2〉)2〉

Ntraj

√
2τint[x2] (63)

If we do this, we get the results in Tab. 3. As we can see, now the agreement with the exact value from the
formula in Creutz and Freedman paper is much more satisfactory.

a < x2 >theory < x2 > error
0.8 0.828609 0.823 0.0050
0.5 0.838264 0.837 0.0063
0.2 0.843609 0.856 0.011
0.1 0.844382 0.850 0.013
0.08 0.844474 0.840 0.015
0.05 0.844575 0.831 0.017
0.02 0.844629 0.824 0.026
0.01 0.844637 0.841 0.033
0.008 0.844638 0.846 0.046
0.005 0.844639 0.869 0.073
0.002 0.844639 0.763 0.058
0.001 0.844639 0.830 0.087

Table 3: Comparison of 〈x2〉 with corrected errors.

Second, now that we know the autocorrelation time we can run the simulation again, but keeping the
Nskip parameter bigger than the autocorrelation time that we have calculated for each value of the lattice
spacing. Thus, for Nskip > τint the relevant trajectories on which measurements are performed will be
taken only every Nskip times, hence leading to uncorrelated trajectories and correspondly independent
data. That increases the accuracy of our result enormously, and we can use the naive error calculation
without any correction, as the autocorrelation time now will be 1, as we explicitly checked again). Of course,
the total number of trajectories increases from Ntraj in the previous case to Nskip×Ntraj in this case and
hence the simulation time is much longer, especially for small lattice spacings. We show the new results for
〈x2〉 in Tab. 4. The results from the simulations are now in total agreement with the theoretical expectation.

We can also compare the time histories for Nskip = 1, as we set in our first running, and for Nskip > τint,
which we have now. We plot that for the value of the lattice spacing a = 0.005 in Fig. 3. The difference
between the two plots is visibly clear. As we see, when we skip a number of trajectories bigger than the
autocorrelation time the bunches of correlated trajectories do not appear anymore, and the data is fluctuate
without any sign of autocorrelation.

To sum up and demostrate the substantial improvement, we plot various results for 〈x2〉 vs. a2 in Fig.
4. The first and second plots show the data for Nskip = 1. The first one has naive error bars. As we
see, the data is very far away from the exact value of the formula in Creutz and Freedman paper and even
inconsistent amongst themselves. As described, we have traced this finding back to the fact that in the first
naive analysis the error bars were underestimated because the autocorrelation time had not been taken into
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a < x2 >exact < x2 > error
0.8 0.828609 0.8317 0.0018
0.5 0.838264 0.8364 0.0017
0.2 0.843609 0.8475 0.0017
0.1 0.844382 0.8428 0.0017
0.08 0.844474 0.8438 0.0017
0.05 0.844575 0.8484 0.0017
0.02 0.844629 0.8421 0.0017
0.01 0.844637 0.8454 0.0017

Table 4: Comparison of 〈x2〉 setting Nskip > τint. The number of data sets is smaller because the running
takes now much longer, as we are increasing enormously the number of trajectories that the simulation
generates.
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Figure 3: Time histories before and after setting Nskip bigger than the autocorrelation time. All other
parameters are held.
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Figure 4: Scaling of 〈x2〉. The two plots at the top show 〈x2〉 vs. a2 for Nskip = 1; the first one has naive
error bars, which are not satisfactory, and the second one has the errors corrected by the autocorrelation
time. The last plot shows the results when the simulation is run for Nskip bigger than the autocorrelation
time in each case.

account properly. The second plot has error bars corrected by the autocorrelation time. The effect is that
the errors are substantially increased and within these larger error bars a much better agreement with the
exact formula is obtained. The third plot is a zoom of these two graphs for the smallest lattice spacings, so
that we can differentiate the various data points. The fourth plot shows the results when Nskip > τint, i.e.
when the data is not correlated. The values lie perfectly consistent on the line for the exact formula even
with the very small naive error bars. Clearly this is the best strategy to get the right results although the
simulations are rather long and demanding.

5.3 〈x(0)x(t)〉 and ∆E

In this section, we are going to study another observable, namely the energy of the system. We run the
simulation taking advantage of the previous analysis, so we keep Nskip > τint. This way we do not have to
worry about the data being correlated, as the autocorrelation time will be 1, as we have checked.

We want to construct the correlator, which obeys an exponential decay law in time with a rate that is
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given by the energy4:
〈x(0)x(t)〉 ∼= e

−a∆Et
~ (64)

In order to obtain the energy ∆E we will fit the numerically computed correlator to the exponential func-
tion5. Note that we have to take into account the periodic boundary conditions for the correlator, which
is symmetric about the middle of the lattice. So we must modify Eq. (64) to include contributions of two
exponentials, as follows:

〈x(0)x(t)〉 = A
(
e
−a∆Et

~ + e
−a∆E(N−t)

~

)
= Ae

−a∆EN
2~

(
e
−a∆Et

~ e
+a∆EN

2~ + e
+a∆Et

~ e
−a∆EN

2~

)
=

= B
(
e
−a∆E

~ (t−N2 ) + e
+a∆E

~ (t−N2 )
)

= 2B cosh
[
a∆E

~

(
t− N

2

)]
(65)

where A and B are constants that do not depend on t. Thus, what we do is to use a cosh function instead of
the exponential to obtain a value for the energy ∆E. To get error bars, we proceed as in the previous Sec.
5.1, and we invert the cosh6 at each time t in order to search for a plateau of the effective energy ∆Eeff .
We set a fixed fitting region in physical time, which we choose to be from at = 2 to at = T/2 (remember
that T = 10). We skip the first points on the lattice because these points have contributions from higher
energy levels than the smallest gap. We also only take into account half of the lattice points because, as we
said before, the correlator is symmetric about the middle of the lattice. The value for the energy can then
also be obtained by a constant fit to the plateau values for 2 < at < T/2. We estimate the error in this
region, summing the biggest and the smallest values, but this time we will divide this by four instead of two,
in order not to overestimate it7. We illustrate this in Fig. 5. The results that we get proceeding in this way
are given in Tab. 5.

a ∆E error
0.8 0.496 0.004
0.5 0.501 0.006
0.2 0.497 0.009
0.1 0.496 0.016
0.08 0.499 0.020
0.05 0.508 0.025
0.02 0.50 0.07
0.01 0.50 0.08

Table 5: Results for the energy ∆E as obtained from the correlator analysis.

Note that from Quantum Mechanics ∆E = ~ω. As we set ~ = 1, we should get ∆E = ω. But on the
lattice, we have to introduce a correction dependent on the lattice spacing, as follows:

ωtheory = ω

√
1 +

a2ω2

4
≈ ω

(
1 +

a2ω2

8

)
(66)

This is the exact formula for the energy in our case. In Fig. 5 we also plot our results for ∆E as a function
of a2 along with this exact formula8. We can see again that the agreement is very good: the line for the

4For a more rigorous way to proceed, we average not only over trajectories but also over time on the lattice, so what we
really calculate is < x(0)x(t) >= 1

Ntraj

∑
Ntraj

1
N

∑N
s=0 x(s)x(s + t). Note that N is the number of lattice points.

5∆E = E1 − E0, where E0 is the energy of the ground state and E1 the energy of the first excited satate.
6x(t) ∼= cosh

[
a∆E

~

(
t− N

2

)]
R(t) =

x(t+1)+x(t−1)
x(t)

=
2 cosh[ a∆E

~ (t−N2 )] cosh[ a∆E
~ ]

cosh[ a∆E
~ (t−N2 )]

= cosh
[

a∆E
~

]
a∆E

~ = cosh−1
(

R(t)
2

)
= ln

(
R(t)

2
+

√
(R(t))2

4
− 1

)
7Althoug this procedure is a little bit arbitrary, it provides a rather conservative error and gives an upper bound for the real

error, which would need much more involved methods.
8For the exact formula, we should see some deviation from a straight line for big lattice spacing, but our range is not big

enough to show this effect.
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exact formula lies within the error bars for almost all the values and that deviations are not very big. Let
us note here again the we have set ω = 0.5 in the simulation, and that is what we get.

To finish we would like to compare the correlators for differents lattice spacing. In Fig. 6 we show this in
two different ways, which we find very interesting to compare. The first plot shows the correlator for three
different values of a as a function of the time in lattice units. We can see that the smaller the lattice spacing,
the longer the time extent: the correlator stretches in time for small lattice spacings and shrinks for big
ones, but the maximum and the minimum values are the same. The second plot shows again the correlator,
but now as a function of the time in physical units (remember that we have set T = 10 as mentioned at the
beginning of this report), for the same three values of a. As we see, the correlator tends to approach the
same behaviour, and this is the right thing to have, as it depends on the energy, which is a physical quantity.
Here we can also see clearly the different numbers of lattice points that we have when we change from one
value of the lattice spacing to another, as we have kept T fixed.

6 Conclusions

In this paper we have described our work on Lattice Field Theory. We focus on a simple system, the quantum
mechanical Harmonic Oscillator. This allows us to perform both, some analytical calculations and to get
some numerical results by means of the Hybrid Monte-Carlo algorithm, so that we can show how the lattice
methods work.

We started with a study of Quantum Mechanics and path integrals using the lattice point of view. We
demonstrated with some simple examples how the path integral works and introduced a time lattice to
discretise the Harmonic Oscillator. We can see already from these examples that the lattice is a nice way
to approach difficult calculations in Quantum Mechanics that other methods, such as perturbative ones,
cannot. We perform an explicit analytical calculation for the kernel of the lattice Harmonic Oscillator, on
which we focus also further.

As a second part, we use the Hybrid Monte-Carlo algorithm to obtain some results for the Harmonic
Oscillator on the lattice by means of numerical simulations. We explain the algorithm and our strategy for
the simulations. We study two observables, which are the expectation value of the square of the position
〈x2〉 and the energy difference between the ground state and the first excited state ∆E = E1 − E0. The
agreement of our final results with the exact formulas, which we know for this simple case, is very good.

We emphasize the importance to take the autocorrelation time that appears in the simulations into
account to achieve a correct error analysis. It is demonstrated that accounting for the autocorrelation time
can lead to long simulations to reach sufficient statistics for precise results. Although for our example of
the Harmonic Oscillator the simulations are very fast, this can constitute a problem in more complicated
situations such as lattice QCD. Therefore, the development of improved algorithms that significantly reduce
the autocorrelation time is of high importance.

We conclude that Lattice Theory is a nice method to do calculations. This kind of approach can be
extended and better algorithms can be used to study more difficult systems and theories, such as QCD,
where we do not know the exact values.
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and the lattice spacing scaling for the energy ∆E.
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A Calculations for the Free Particle path integral

We want to evaluate the position integrals∫ +∞

−∞

(
2πi~a
m

)− 2
2

e
m

2i~a [(x2−x1)2+(x1−x0)2]dx1 =
(

2πi~(2a)
m

)− 1
2

e
m

2i~(2a) (x2−x0)2

(67)

We proceed as follows:

e−
m

2i~a [(x2−x1)2+(x1−x0)2]dx1 = e−
m

2i~a [2x2
1−2x1(x2+x0)+x2

2+x0
2]dx1 = e−

m
i~a [x2− (x2+x0)2

4 +
x2

2+x0
2

2 ]dx (68)

The result for the integration over x2 that we obtain by completing the square is similar:∫ +∞

−∞

(√
8πi~a
m

)− 2
2

e
m

4i~a [2(x3−x2)2+(x2−x0)2]dx2 =
(

2πi~(3a)
m

)− 1
2

e
m

2i~(3a) (x3−x0)2

(69)

We can generalize this to an induction step for the (n-1)th integration:∫ +∞

−∞

(
2
√
n− 1πi~a
m

)−1

e
m

2i~a(n−1) [nxn−1−2xn−1(x0+(n−1)xn)+x2
0+(n−1)x2

n]dxn−1 =

=
∫ +∞

−∞

(
2
√
n− 1πi~a
m

)−1

e
nm

2i~a(n−1) [(xn−1− x0+(n−1)xn
n )2]− m

2i~a(n−1) [
(x0+(n−1)xn)2

n −x2
0−(n−1)x2

n]dxn−1 =

=
(

2πi~na
m

)− 1
2

e
m

2i~a(n−1)n [−x2
0−(n−1)2x2

n−2(n−1)x0xn+nx2
0+n(n−1)x2

n] =

=
(

2πi~na
m

)− 1
2

e
m

2i~a(n−1)n [(n−1)x2
0+(n2−n−n2+2n−1)x2

n−2x0xn(n−1)] =
(

2πi~na
m

)− 1
2

e
m

2i~an (x0−xn)2
(70)
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So that finally the kernel (because of Na = T ) after (N − 1) integrations will be:

K(xb, xa, T ) = K(xN , x0, T ) =
(

2πi~T
m

)− 1
2

e
m

2i~T (x0−xN )2
(71)

B Classical action for the Harmonic Oscillator

We consider the classical action

Scl =
∫ tb

ta

dt
m

2
[
ẋ2 − ω2x2

]
(72)

Here x(t) is the classical trajectory with the boundary conditions x(0) = xa and x(T ) = xb. As x(t)
is the classical path, it must be a solution of the classical equation of motion. Thus x(t) is of the form
x(t) = A cosωt+B sinωt and with respect to the boundary conditions will be:

x(t) = xa cosωt+
xb

sinωT
sinωt− xa

cosωT
sinωT

sinωt (73)

For the time derivative we find respectively:

ẋ(t) = −ωxa sinωt+
ωxb

sinωT
cosωt− xaω

cosωT
sinωT

cosωt (74)

By squaring and putting the result into the appropiate form, we get:

ẋ(t)2 − ω2x2 = −ω2x2
a(sin2− cos2 ωt) +

(xb − xa cosωT )2

sin2 ωT
ω2(cos2 ωt− sin2 ωt)− (75)

−4ω2xa
xb − xa cosωT

sinωT
cosωT sinωt

After integration by parts we see:∫ T

0

dt sin2 ωt = −
[

sinωt cosωt
ω

]t=T
t=0

+
∫ T

0

dt cos2 ωt (76)

As well as: ∫ T

0

dt sinωt cosωt =
[

sin2 ωt

ω

]t=T
t=0

−
∫ T

0

dt cosωt sinωt =
1

2ω
sin2 ωT (77)

So in performing the integral in time we find the action

Scl =
m

2
ω

[
(xb − xa cosωT )2

sinωT
cosωT − x2

a sinωT cosωT − 2xa(xb − xa cosωT ) sinωT
]

(78)

which we can simplify to get the final result for the classical action of the Harmonic Oscillator:

Scl =
m

2
ω

sinωT
[
(x2
a + x2

b) cosωT − 2xaxb
]

(79)

C Calculations for the action on the lattice under Fourier trans-
formations for the Harmonic Oscilator

In order to perform the calculation of the sums we insert the exponentials, i.e. sin(πnmN ) = eiπnm/N−e−iπnm/N
2 .

That way, for terms of the form
∑N−1
n=1 y

2
n we obtain the Fourier transforms:

N−1∑
n=1

y2
n =

∑
n,m,l

− 1
4N

(eiπnm/N − e−iπnm/N )Am(eiπnl/N − e−iπnl/N )Al = (80)
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=
∑
n,m,l

− 1
4N

AmAl(eiπn(m+l)/N + e−iπn(m+l)/N − eiπn(m−l)/N − e−iπn(m−l)/N ) =

Now we change the summation index n→ −n in the second sum:

=
∑
m,l

− 1
4N

AmAl[
N−1∑
n=1

(eiπn(m+l)/N − eiπn(l−m)/N ) +
1−N∑
n=−1

(eiπn(m+l)/N − eiπn(l−m)/N )] =

If we now shift the second sum by 2N we get

=
∑
m,l

− 1
4N

AmAl[
N−1∑
n=1

(eiπn(m+l)/N − eiπn(l−m)/N ) +
N+1∑

n=2N−1

(eiπn(m+l)/N − eiπn(l−m)/N )] =

=
∑
m,l

− 1
4N

AmAl[
2N−1∑
n=1

(ei2πn(m+l)/2N − ei2πn(l−m)/2N )] =
∑
m,l

− 1
4N

AmAl[−2Nδlm]

where we have used
∑N−1
n=1 e

i2πn(m−l)/N = Nδml to finally obtain the result:

N−1∑
n=0

y2
n =

∑
n

1
2
A2
n (81)

We follow the same procedure for the sum
∑N−1
n=1 y

2
n+1:

N−1∑
n=1

y2
n+1 =

∑
n,m,l

− 1
4N

AmAl(eiπ(n+1)(m+l)/N + e−iπ(n+1)(m+l)/N − (82)

−eiπ(n+1)(m−l)/N − e−iπ(n+1)(m−l)/N ) =

After we change the summation index n+ 1→ −n in the second sum, we shift it by 2N to get:

=
∑
m,l

− 1
4N

AmAl[
N∑
n=2

(eiπn(m+l)/N − eiπn(l−m)/N ) +
N∑

n=2N−2

(eiπn(m+l)/N − eiπn(l−m)/N )] =

Now we contract into one sum:

=
∑
m,l

− 1
4N

AmAl[
2N−1∑
n=1

(ei2πn(m+l)/2N − ei2πn(l−m)/2N )−

−(ei2π(m+l)/2N − ei2π(l−m)/2N )− (ei2π(2N−1)(m+l)/2N − ei2π(2N−1)(l−m)/2N )]

where we have substracted the extra summands we have added to the sum, in order to obtain (again with∑N−1
n=1 e

i2πn(m−l)/N = Nδml)
N−1∑
n=0

y2
n+1 =

∑
n

1
2
A2
n(1 + C(n)/N) (83)

which in the desired limit N →∞ reads the same as the sum discussed above.

Finally we have to consider the mixed sum
∑N−1
n=1 (yn+1 − yn)2. We will execute this calculation in all

steps, but one may skip the minor details. First of all we insert the Fourrier transforms:

N−1∑
n=1

(yn+1 − yn)2 =
∑
n,m,l

− 1
4N

(eiπ(n+1)m/N − e−iπ(n+1)m/N − eiπnm/N + e−iπnm/N )Am × (84)

×(eiπ(n+1)l/N − e−iπ(n+1)l/N − eiπnl/N + e−iπnl/N )Al =
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Then we factorize and multiply out to get:

=
∑
n,m,l

− 1
4N

AmAl[eiπnm/N (eiπm/N − 1)− e−iπnm/N (e−iπm/N − 1)]×

×[eiπnl/N (eiπl/N − 1)− e−iπnl/N (e−iπl/N − 1)] =

=
∑
n,m,l

− 1
4N

AmAl[eiπn(l+m)/N (eiπl/N − 1)(eiπm/N − 1) + e−iπn(l+m)/N (e−iπl/N − 1)(e−iπm/N − 1)−

−eiπn(m−l)/N (e−iπl/N − 1)(eiπm/N − 1)− e−iπn(m−l)/N (eiπl/N − 1)(e−iπm/N − 1)] =

This we can as well write as:

=
∑
m,l

− 1
4N

AmAl[
N−1∑
n=1

eiπ(n+1)(l+m)/N (1− e−iπl/N )(1− e−iπm/N ) +
N−1∑
n=1

e−iπn(l+m)/N (e−iπl/N − 1)×

×(e−iπm/N − 1)−
N−1∑
n=1

eiπ(n+1)(m−l)/N (1− eiπl/N )(1− e−iπm/N )−

−
N−1∑
n=1

e−iπn(m−l)/N (eiπl/N − 1)(e−iπm/N − 1)] =

Now we can make the appropriate changes of summation indices, i.e. n+ 1→ n and −n→ n

=
∑
m,l

− 1
4N

AmAl[(
N∑
n=2

+
1−N∑
n=−1

)eiπn(l+m)/N (e−iπl/N − 1)(e−iπm/N − 1)−

−(
N∑
n=2

+
1−N∑
n=−1

)eiπn(m−l)/N (eiπl/N − 1)(e−iπm/N − 1)] =

and again shift the sum by 2N, that means here we have (
∑N
n=2 +

∑1−N
n=−1) = (

∑N
n=2 +

∑N+1
n=2N−1) to get

(where we again substract the extra terms for n=1, which we have added to the sum):

=
∑
m,l

− 1
4N

AmAl[
2N−1∑
n=1

(eiπn(l+m)/N (e−iπl/N − 1)(e−iπm/N − 1)− eiπn(m−l)/N (eiπl/N − 1)(e−iπm/N − 1))−

−eiπ(l+m)/N (e−iπl/N − 1)(e−iπm/N − 1) + eiπ(m−l)/N (eiπl/N − 1)(e−iπm/N − 1)]

At this point we can again explicitely calculate the sum over n to get the δ-functions and neglect extra terms
of the order 1/N. Thus we overall find the result for the mixed sum, which is:

N−1∑
n=1

(yn+1 − yn)2 =
∑
n

A2
n

2
(e−iπn/N − 1)(e+iπn/N − 1)−

∑
m,l

AmAl
4N

C(m, l)

N−1∑
n=1

(yn+1 − yn)2 →
∑
n

A2
n

2
(2− (e−iπn/N + e+iπn/N )) =

∑
n

A2
n2 sin2

(πm
2N

)
(85)
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