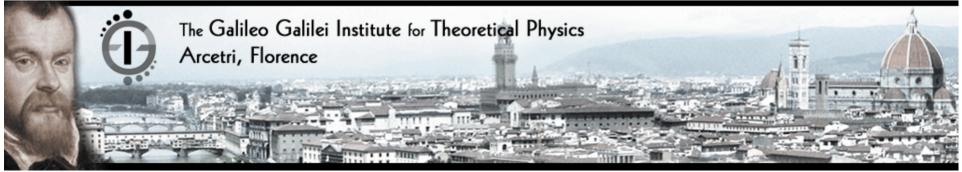
RI-MOM DETERMINATION OF RENORMALIZATION CONSTANTS

Vittorio Lubicz

ETMC meeting

Arcetri, February 6-7 2007

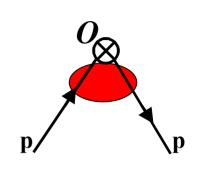


THE RI-MOM METHOD

$$G_{\Gamma}^{ud}(p,p') = \sum_{x,y} \langle u(x)(\overline{u}\Gamma d)_0 \overline{d}(y) \rangle e^{-ip \cdot x + ip' \cdot y}$$

$$S_{u}(p) = \sum_{x} \langle u(x)\overline{u}(0) \rangle e^{-ip \cdot x}$$

$$\Gamma_{\Gamma}^{ud}(p, p') = Tr \left[S_u(p)^{-1} G_{\Gamma}^{ud}(p, p') S_d(p')^{-1} P_{\Gamma} \right]$$



$$\left. \mathbf{Z}_{\Gamma} \mathbf{Z}_{q}^{-1} \Gamma_{\Gamma}^{ud}(p,p) \right|_{p^{2}=\mu^{2}} = 1$$

$$\left. \frac{\mathbf{Z}_{\Gamma} \mathbf{Z}_{q}^{-1} \Gamma_{\Gamma}^{ud}(p,p) \right|_{p^{2}=\mu^{2}} = 1 \qquad \mathbf{Z}_{q} \frac{i}{12} Tr \left[\frac{pS(p)^{-1}}{p^{2}} \right]_{p^{2}=\mu^{2}} = 1$$

SIMULATION DETAILS:

- $\beta = 3.9$, $V = 24^3 \times 48$
- 240 gauge configurations
- 4 masses :(a μ)=0.0040, 0.0064, 0.0100, 0.0150
- periodic boundary conditions

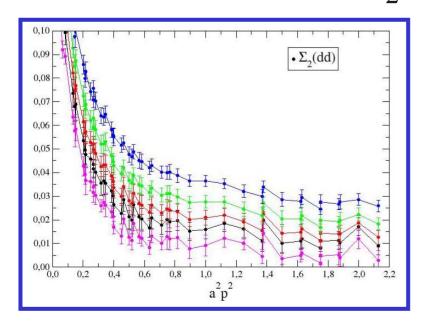
THE QUARK PROPAGATOR

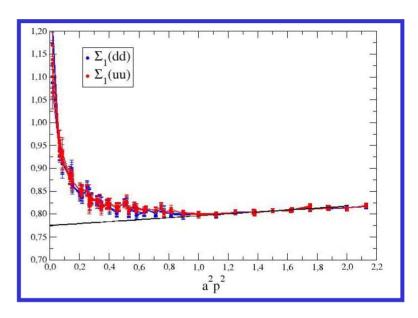
$$S(p) = \frac{ip}{p^2} \sigma_1(p^2) + \frac{1}{p^2} \sigma_2(p^2) + \frac{i\gamma_5}{p^2} \sigma_3(p^2)$$

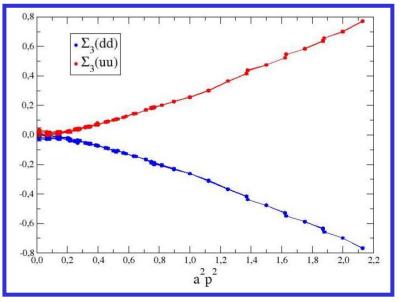
$$S(p)^{-1} = -ip\Sigma_{1}(p^{2}) + \Sigma_{2}(p^{2}) - i\gamma_{5}\Sigma_{3}(p^{2})$$

At tree-level:

$$\Sigma_1(p^2) = 1, \Sigma_2(p^2) = m, \Sigma_3(p^2) = \pm \frac{ar}{2}p^2$$

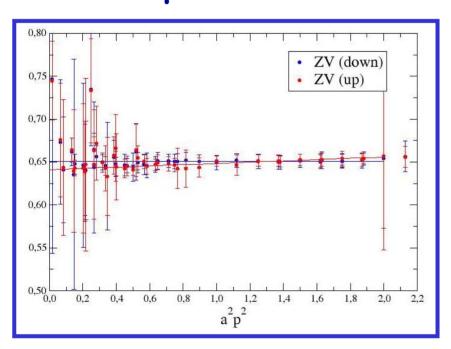


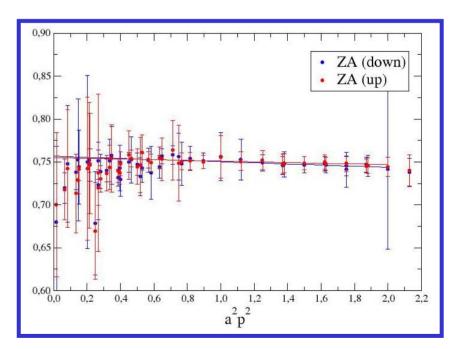




RENORMALIZATION CONSTANTS

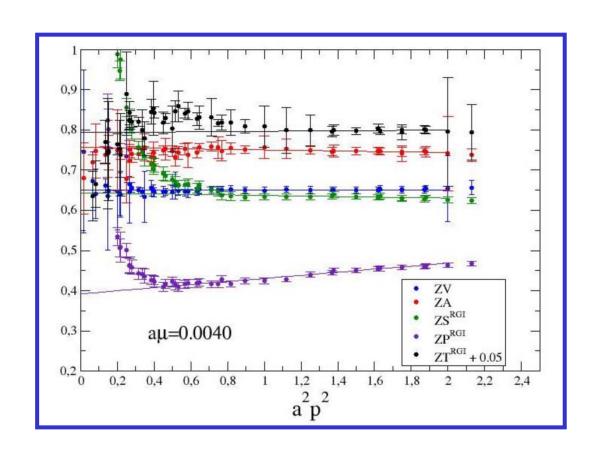
Comparison between "u-d" and "d-u" results





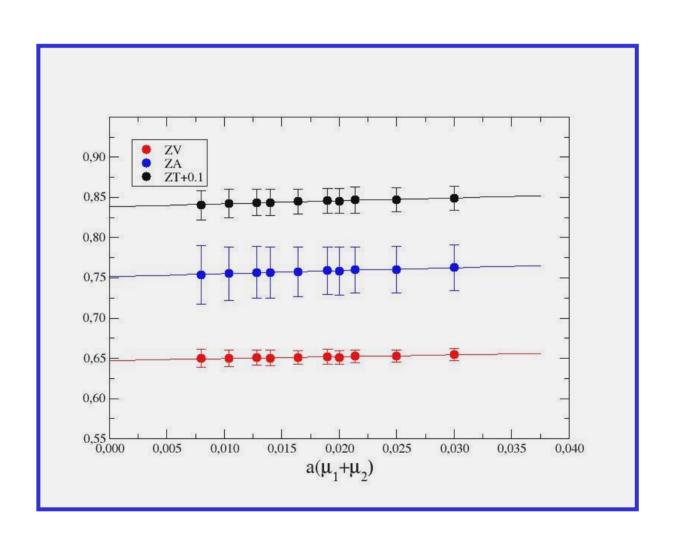
Similar results are obtained for the other RCs

RENORMALIZATION SCALE DEPENDENCE



For the scale dependent RCs: $Z(\mu) = C(\mu) Z^{RGI}$

CHIRAL EXTRAPOLATIONS

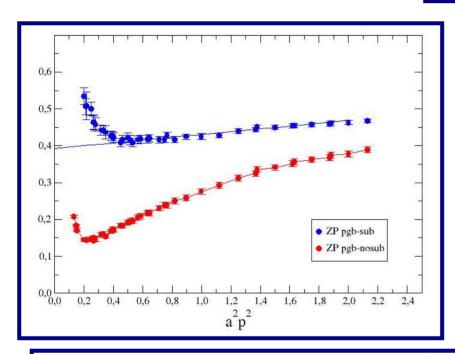


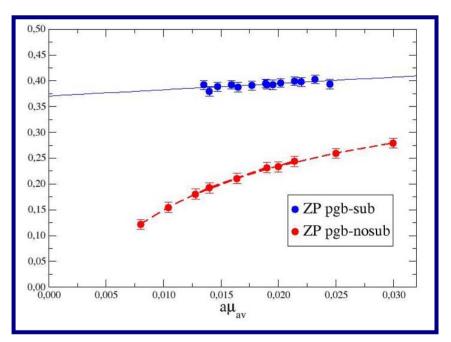
THE GOLDSTONE POLE

The pseudoscalar vertex couples to the PGB

$$\Gamma_{\rm P}({\rm p^2}) \approx {\rm A} ({\rm p^2}) + {\rm B} ({\rm p^2}) \frac{<\overline{\psi}\psi>}{m_q {\rm p^2}} + ...$$

J.Cudell *et al.*, '98

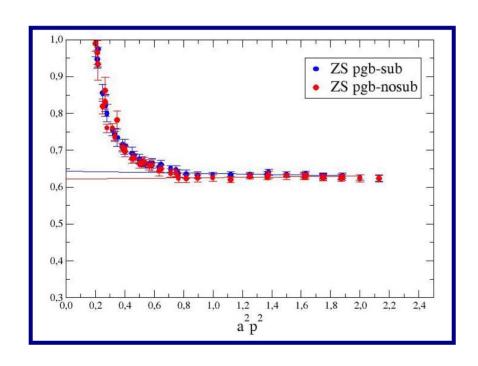


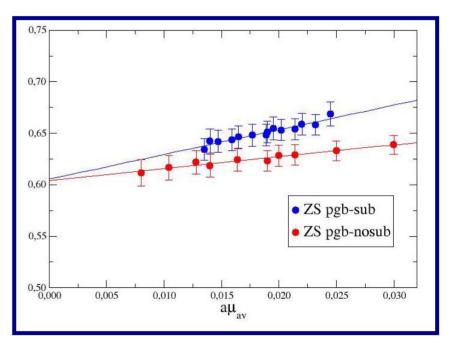


$$\frac{\Gamma_{P}^{SUB}}{m_{1}-m_{2}} = \frac{m_{1}\Gamma_{P}(m_{1})-m_{2}\Gamma_{P}(m_{2})}{m_{1}-m_{2}} \approx \Gamma_{P}(m_{1}) + m_{1}\frac{\partial \Gamma_{P}}{\partial m_{1}} = A + ...$$
L.Giusti, A.Vladikas, '00

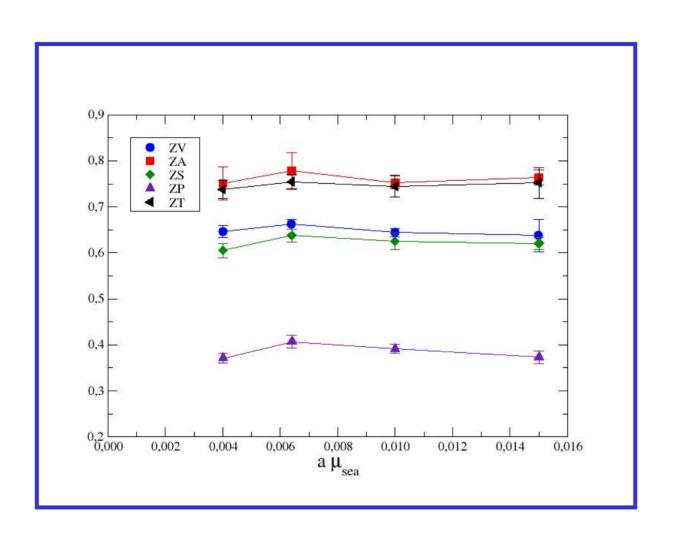
THE GOLDSTONE POLE (cont.)

With twisted mass at maximal twist the coupling of the scalar density to the PGB is suppressed by a factor of a²





SEA QUARK MASS DEPENDENCE



O(a)-IMPROVEMENT (see talk by Roberto)

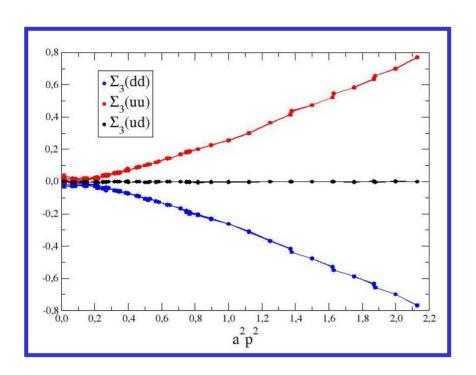
- "Asymptotic" O(a)-improvement holds at large p^2 (and $m\rightarrow 0$)
- "Automatic" O(a)-improvement holds for parity-even correlators (even when gauge fixing is implemented)
- Because the action is invariant under $P \times (u \leftrightarrow d)$, O(a)-improved results can be obtained by averaging over $(u \leftrightarrow d)$

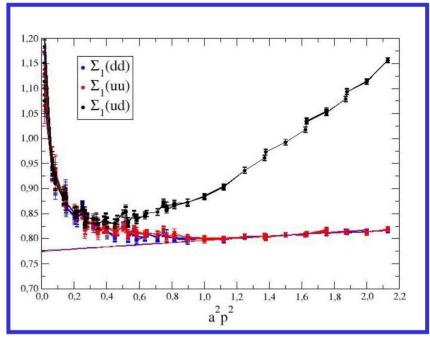
TWO STRATEGIES:

1)
$$\overline{G}(p)=[G^{ud}(p)+G^{du}(p)]/2$$
, $\overline{S}(p)=[S_u(p)+S_d(p)]/2$

2)
$$Z=[Z^{ud}+Z^{du}]/2$$

STRATEGY 1): $\overline{S}(p)=[S_u(p)+S_d(p)]/2$





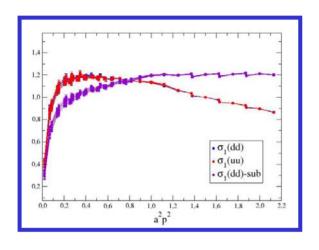
$$\overline{\Sigma}_{1} \underset{p^{2} \to \infty}{\simeq} \Sigma_{1}^{u(d)} \left[1 + \frac{1}{p^{2}} \left(\frac{\sigma_{3}}{\sigma_{1}} \right)^{2} \right] \simeq \Sigma_{1}^{u(d)} \left[1 + O(a^{2}p^{2}) \right]$$

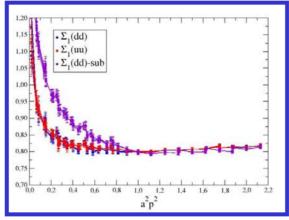
Large $O(a^2p^2)$ corrections.

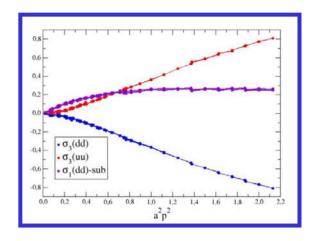
Use strategy 2): Z=[Zud+ Zdu]/2

O(a2)-CORRECTIONS

[see D.Becirevic et al, hep-lat/9909082]



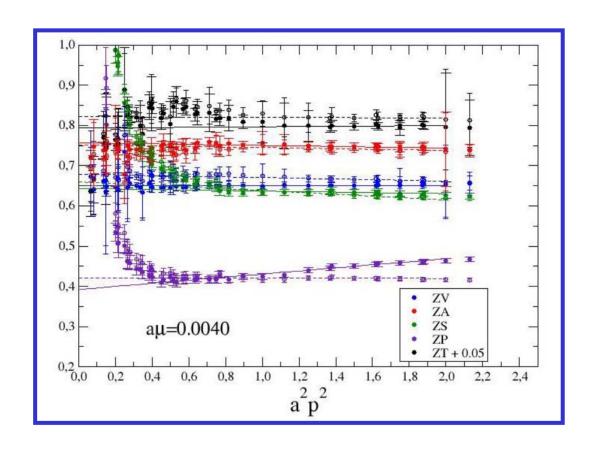




$$\sigma_{1} = \frac{1}{\Sigma_{1}} \left[1 + \frac{1}{p^{2}} \left(\frac{\Sigma_{2}}{\Sigma_{1}} \right)^{2} + \frac{1}{p^{2}} \left(\frac{\Sigma_{3}}{\Sigma_{1}} \right)^{2} \right]^{-1} \simeq \frac{1}{\Sigma_{1}} \left[1 + z_{3} a^{2} p^{2} \right]^{-1}$$

$$\tilde{S}(p) = S(p) \left[1 + z_3 a^2 p^2 \right] - iCa\gamma_5$$

$O(a^2)$ -CORRECTIONS (cont.)



The largest effect is observed in ZP. But the final estimates of ZP are very close.

RESULTS

Z_{V}	0.65(1)(2)
Z _A	0.75(2)(2)
Zs	0.61 (2)(2)
Z _P	0.39(1)(2)
Z _T	0.74(1)(2)
Zq	0.78(1)(1)

Note: $Z_V \simeq 0.61$ with other methods

	RI-MOM				BPT
	$a\mu$ =0.0150	$a\mu$ =0.0100	$a\mu$ =0.0064	$a\mu$ =0.0040	1-loop
ZV	0.638(35)	0.644(9)	0.662(10)	0.647(13)	0.63-0.71
				0.635(23)	
				0.670(11)	
ZA	0.764(17)	0.753(14)	0.778(40)	0.751(36)	0.72-0.78
				0.750(19)	
				0.749(40)	
ZS	0.621(13)	0.625(18)	0.638(14)	0.605(15)	0.70-0.76
				0.600(15)	
				0.622(20)	
ZP	0.373(14)	0.391(10)	0.407(14)	0.371(11)	0.52-0.62
				0.377(14)	
				0.399(10)	
ZT	0.752(34)	0.745(24)	0.755(16)	0.738(19)	0.70-0.76
				0.743(18)	
				0.766(25)	
ZP/ZS	0.581(24)	0.633(23)	0.632(25)	0.613(21)	0.74-0.82
				0.617(26)	
				0.642(20)	
Zq	0.783(13)	0.775(9)	0.789(10)	0.776(10)	0.71-0.77
				0.774(10)	
				0.771(10)	

TWISTED vs UNTWISTED

Wilson Plaquette + Clover, Nf=0, β =6.2

Twisted Untwisted

Z _V	0.788 (42)	0.783(3)
Z _A	0.809 (7)	0.819(3)
Zs	0.546 (8)	0.564(4)
Z _P	0.540(9)	0.642(3)
Z _T	0.875 (4)	0.876(2)
Zq	0.853(2)	0.850(2)

D.Becirevic et al, hep-lat/0401033

CONCLUSIONS

- Non-perturbative renormalization is a crucial ingredient to achieve a percent precision on quark masses and hadronic matrix elements
- O(a)-improvement of RCs is (almost) "automatic" and can be achieved by following several strategies
- Determinations which differ by $O(a^2)$ terms agree better than 5%. But the issue of ZV should be clarified. Further studies are possible (e.g. $Z(a\mu)/Z(a'\mu)$ independent of μ up to discretization effects).
- Future improvements: implement i) the Liverpool stochastic method and ii) antiperidodic boundary conditions.