Pion and Kaon EM matrix elements

Baum et al

Introduction

Calculation

Results

Work in progress

.. 06. 000

Matrix element of the electromagnetic operator between Kaon and pion states

Baum, Itzhak¹ Lubicz, Vittorio² Martinelli, Guido³ Simula, Silvano²

¹Rome University "La Sapienza"

 $^2\mbox{University}$ of Rome III and INFN - Roma Tre

 3 University of Rome "La Sapienza" and INFN Rome

Villasimius, 15th June, 2010

Outline

Pion and Kaon EM matrix elements

Baum et al

Introductio

Roculte

Work in

C - . . . I

1 Introduction - Kaon rare decays

2 Calculation of the EM operator matrix element

3 Results

4 Work in progress

Kaon rare semileptonic decays as new physics probes

Pion and Kaon FM matrix elements

Introduction

Rare Kaon decays have not been detected yet:

$$BR(K_L \to \pi^0 \ell^{\pm} \ell^{\mp})_{exp} < 6.6 \cdot 10^{-10}$$

In the SM they are estimated to be

$$BR(K \to \pi ee)_{SM} \sim 1.5 \cdot 10^{-12}$$

$$BR(K \to \pi \mu \mu)_{SM} \sim 3 \cdot 10^{-10}$$

New physics can be the leading contribution, mediated through the Electro-magnetic and Chromo-magnetic operators:

$$Q_{EM}^{+} = \overline{s} F_{\mu\nu} \sigma^{\mu\nu} d$$

$$Q_{CM}^{+} = \overline{s} G_{\mu\nu} \sigma^{\mu\nu} d$$

■ Sensitive to hadronic matrix elements.

Previous work

Pion and Kaon EM matrix elements

Baum et al.

Introduction

Rocult

Work in

Conclusion

First lattice calculation [Becirevic et al. 2001] of the EM form factor

$$f_T(q^2 = 0) = 0.77 \pm 0.06 \pm 0.03$$

With the slope in q^2

$$\lambda = 1.21 \pm 0.05 \text{ GeV}^{-2}$$

- Quenched $(n_f = 0)$
- High pion masses $(530 < m_{\pi} < 800 MeV)$
- One lattice size $(a^{-1} = 2.7(1) \ GeV)$

Lattice details

Pion and Kaon EM matrix elements

Baum et al.

Introduction

Doculto

resuits

progress

Conclusions

■ ETMC lattice QCD simulations [ETMC 0701012, 0911.5061]

■ Dynamical flavors: $n_f = 2$

■ Pion mass range: $270 < m_{\pi} < 600 \text{ MeV}$

■ Lattice sizes: $24^3 \times 48$ and $32^3 \times 64$

■ Lattice step sizes: a = 0.068, 0.085, 0.10 fm

- Action is Symanzik tree-level improved with maximally twisted-mass Wilson fermions
- Non perturbative renormalization in the RI/MOM scheme [ETMC 1004.1115]
- 3-point correlators with all-to-all stochastic propagator calculation, increase accuracy
- Breit momentum frame: $\vec{p}_K = \vec{p}, \ \vec{p}_\pi = -\vec{p}$

Electromagnetic form factor calculation

Pion and Kaon FM matrix elements

Introduction

$$Q_{EM} = \overline{s}\sigma^{\mu\nu}d$$

The EM form factor is acquired from the EM matrix element by [Becirevic et al. 2001]:

$$\left\langle \frac{\pi^0}{\sqrt{2}} | \mathcal{Q}_{EM} | K^0 \right\rangle = i \left(p_K^{\mu} p_{\pi}^{\nu} - p_K^{\nu} p_{\pi}^{\mu} \right) \frac{\sqrt{2} f_T}{m_K + m_{\pi}}$$

To obtain the matrix elements from the 3-point correlators, we look at the lattice times far from the pion and Kaon sources

$$C_3^{K\pi} \to \frac{\sqrt{Z_K Z_\pi}}{4E_K E_\pi} \langle \pi^0 | \mathcal{Q}_{EM} | K^0 \rangle e^{-E_K t_x - E_\pi (t_y - t_x)}$$

and use the ratio

$$\frac{C_3^{K\pi}C_3^{\pi K}}{C_2^{\pi}(t_u)C_2^{K}(t_u)} \rightarrow \frac{\left\langle \pi^0 \left| \mathcal{Q}_{EM} \right| K^0 \right\rangle^2}{16E_K E_{\pi}}$$

where t_y is a fixed point $t_y = T/2$.

Calculations

Pion and Kaon EM matrix elements

Baum et al.

Introduction

Calculations

Result

Work in progress

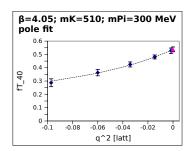
Conclusion

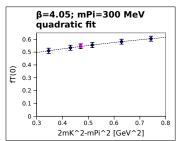
Interpolation in momentum to $q^2 = 0$, assuming pole behaviour:

$$f_T(q^2) = \frac{f_T(0)}{1 - q^2 \lambda}$$

Interpolation to physical strange mass:

$$(2m_K^2 - m_\pi^2)_{LATT} \to (2m_K^2 - m_\pi^2)_{PHYS} \propto (m_s)_{PHYS}$$





Extrapolation in masses

Pion and Kaon EM matrix elements

Baum et al.

Introduction

Calculations

D ---- lk--

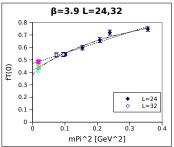
resuits

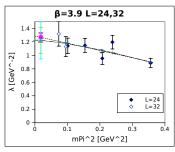
progress

. . .

Extrapolation in m_π^2 to physical pion mass $m_{\pi^0}=135~{\rm MeV}$

- $\blacksquare \ \ \text{linear} \ f = Am_\pi^2 + B$
- $\qquad \text{quadratic } f = A' m_\pi^4 + B' m_\pi^2 + C'$
- \blacksquare log-linear $f=A''m_\pi^2ln(m_\pi^2)+B''m_\pi^2+C''$





Small finite volume effects

Results

Pion and Kaon EM matrix elements

Baum et al

Introduction

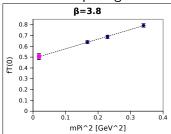
Calculations

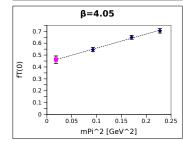
Doculto

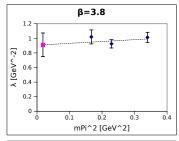
Work in

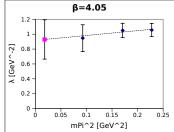
J. 05. 000

Other lattice spacings:





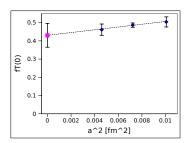


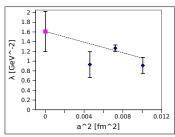


Results

Pion and Kaon EM matrix elements

Results





We find (Preliminary results, no systematic effects)

$$f_T(q^2=0) = 0.430 \pm 0.066^{stat}$$

$$\lambda = 1.61 \pm 0.41^{stat} \text{ GeV}^{-2}$$
 (slope in q^2 , pole fit)

To compare with [Becirevic et al. 2001] (linear fit)

$$f_T(0) = 0.77 \pm 0.06 \pm 0.03$$

$$\lambda = 1.21 \pm 0.05 \text{ GeV}^{-2}$$

Results

Pion and Kaon EM matrix elements

Baum et al

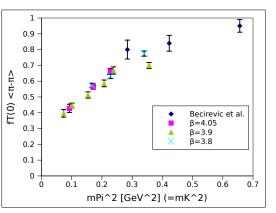
Introduction

Results

Work in

_ . .

Confronting results for $m_K = m_\pi$ for similar lattice sizes a



Similar behaviour, difference may be due to:

- Extrapolation from large pion masses
- Quenching effects

Work in progress

Pion and Kaon EM matrix elements

Baum et al

Introductior

Results

Work in progress

- Electro-magnetic operator $\mathcal{Q}^+_{EM} = \overline{s} \sigma^{\mu\nu} d$
 - Combined fit for all lattice spacings
 - Systematic errors analysis (chiral extrapolation, momentum dependence)
- \blacksquare Chromo-magnetic operator $\mathcal{Q}_{CM}^+ = \overline{s} G_{\mu\nu} \sigma^{\mu\nu} d$
 - No previous lattice calculation
 - Matrix elements calculation
 - Renormalization

$$Q_{CM}^{renorm} = Z_{CM} \left(Q_{CM}^{bare} + \frac{c}{a} Q_S \right)$$

- additive subtraction of mixing with scalar operator
- multiplicative 1-loop lattice perturbation theory [H. Panagopoulos et al.]

Conclusions

Pion and Kaon EM matrix elements

Baum et al

Introduction

Coloulation

Results

progress

- Previously, single calculation (2001) of the EM operator
- Our calculations were performed for a large range of masses and lattice spacings
- Higher statistical accuracy achieved
- Values at $q^2 = 0$ differ, may be due to either quenching or smaller pion masses
- $lue{}$ Slope in q^2 is consistent with previous result, but with higher preliminary statistical error
- Chromo-magnetic operator is work-in-progress

Pion and Kaon EM matrix elements

Baum et a

Introduction

Doculto

Work in

Conclusions

Thank you!

Pion and Kaon EM matrix elements

Baum et al

Introduction

.

Results

Work in progress

- D. Becirevic, V. Lubicz, G. Martinelli and F. Mescia [SPQcdR Collaboration], Phys. Lett. B **501**, 98 (2001) [arXiv:hep-ph/0010349].
- P. Boucaud *et al.* [ETM Collaboration], Phys. Lett. B **650**, 304 (2007) [arXiv:hep-lat/0701012].
- R. Baron *et al.* [ETM Collaboration], arXiv:0911.5061 [hep-lat].
- M. Constantinou et al., arXiv:1004.1115 [hep-lat].