Deflation (Lüscher)

- lacktriangle assume you have a set of N orthonormal spinor fields ϕ_I
- project Dirac operator D on the subspace

$$A_{kl} = \langle \phi_k \ D \ \phi_l \rangle$$

and construct projectors

$$P_L \psi = \psi - \sum_{k,l} D\phi_k (A^{-1})_{kl} \langle \phi_l | \psi \rangle$$

 $P_R \psi = \psi - \sum_{k,l} \phi_k (A^{-1})_{kl} \langle \phi_l | D\psi \rangle$

- ▶ Now solve $D\psi = \eta$ in steps:
 - solve $P_L D \chi = P_L \eta$ for χ
 - construct

$$\psi = P_R \chi + \sum_{k,l} \phi_k (A^{-1})_{kl} \langle \phi_l, \eta \rangle$$

ł

Deflation (Lüscher)

- how to obtain the subspace?
- ▶ the exact eigenvectors would require V² effort
- Lüscher: use inexact eigenvectos
 - ▶ Divide the lattice into N_b blocks with coordinate \vec{a}
 - Generate N_s random vectors ψ_I
 - make them rough eigenvectors applying approximate D⁻¹
 - generate $N_b \cdot N_s$ by restricting the ψ to the blocks

$$\phi_l^{\vec{a}} = egin{cases} \psi_l^{\vec{b}} & & \vec{a} = \vec{b} \\ 0 & & \text{else} \end{cases}$$

.

Deflation: Free Case

- basic algorithm implemented and working (Albert, Karl, Siebren)
- ▶ 8⁴ lattice, 4⁴ blocks, $N_s = 24$, $\mu = 0$

κ	DFLGCR	GCR
0.1	30	37
0.11	36	56
0.12	44	106
0.124	48	158
0.125	49	

▶ 8⁴ lattice, 4⁴ blocks, $N_s = 24$, $\kappa = 0.125$

$2\kappa\mu$	DFLGCR	GCR	CG
0.0002	49	175	58

ı

Deflation: Realistic Case

- we see a significant reduction in the GCR iteration numbers compared to CG even/odd
- however, execution time is not yet reduced compared to CG with even/odd
- We need to work on preconditioning (we have polynomial and SAP) and other code improvements (in particular single precision inner solver iterations)
- we want to include it into the HMC
- all of this work in progress, ideas welcome

New Code Features: Online Measurements

we measure on the fly (source - sink):

$$\langle PP \rangle, \ \langle PA_0 \rangle, \ \langle PV_0 \rangle$$

- using a stochastic time-slice source (all colour, all spin)
- allows to measure:

$$m_{\rm PS}, f_{\rm PS}, Z_{\rm V}$$

relevant input parameters:

PerfromOnlineMeasurements = yes|no OnlineMeasurementsFreq = n

New Code Features: Arbitrary n_f

- code supports now arbitrary no. of pseudo fermion "monomials" (chroma)
- a monomial can represent:

$$\det(Q(\kappa)^2 + \mu_q^2), \ \frac{\det(Q(\kappa)^2 + \mu_q^2)}{\det(Q(\kappa')^2 + \mu_q'^2)}, \ \det(P_{n,\epsilon}(Q_{\mathrm{nd}}(\kappa, \bar{\epsilon}, \bar{\mu}_q)^2))$$

- no. of flavours and preconditioning can be freely combined
- integration on any available timescale possible

New Code Features: Arbitrary n_f

relevant input parameters (example):

```
BeginMonomial DET
  Timescale = 1
  2KappaMu = 0.
 kappa = 0.125
 AcceptancePrecision = 1.e-20
  ForcePrecision = 1.e-12
 Name = det
  solver = cq
  CSGHistory = 10
  CSGHistory2 = 10
EndMonomial
```

available monomials are:

DET, DETRATIO, NDPOLY, GAUGE

ToDo List

- further optimisation for the BG/P
- single precision Dirac operators for various architectures
- **...!?**