B_K from N_F =2 tmQCD:

Federico Mescia, INFN-Frascati -> U. of Barcelona (UB)

on behalf of

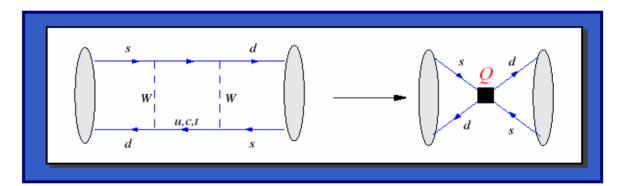
P.Dimopoulos, R. Frezzotti, G.C Rossi, A. Vladikas

V. Gimenez

V. Lubicz, S. Simula

+ ...

OUTLINE


- 1. HOT News on B_{κ}
- 2. Our Lattice calculation: $B_K (N_F=2)$ => a) run about to finish; b) renormalisation to be completed
- 3. Schedule and New applications

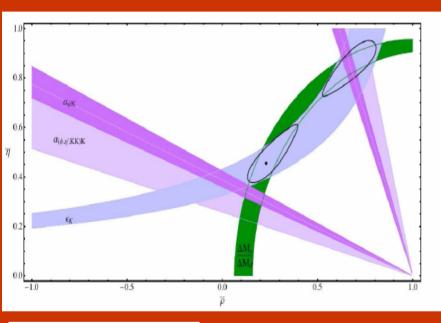
CP-Violation in K – K Mixing: ε_{κ} and B_{κ}

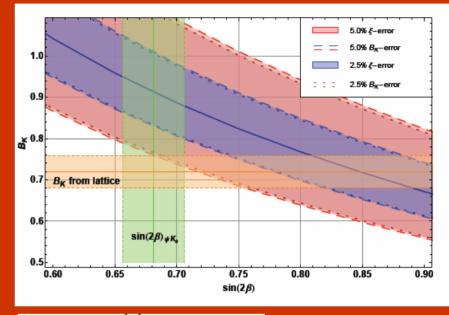
$$K_L \sim (K^0 - \overline{K}^0) + \varepsilon_{\mathbf{K}}(K^0 + \overline{K}^0)$$

$$\varepsilon_{\mathbf{K}} \rightarrow \text{indirect CP-violation}$$

The Effective $\Delta S=2$ **Hamiltonian**

$$\varepsilon_{K} \sim \langle \bar{K}^{0} | \mathcal{H}_{\text{eff}}^{\Delta S=2} | K^{0} \rangle = C(\mu) \cdot \langle \bar{K}^{0} | \overline{s} \gamma_{\mu} (1 - \gamma_{5}) d \, \bar{s} \gamma_{\mu} (1 - \gamma_{5}) d \, | K^{0} \rangle$$


$$\begin{array}{rcl} \varepsilon_K^{\rm exp.} & = & (2.280 \pm 0.013) \\ & & \times 10^{-3} e^{i\pi/4} \end{array}$$


$$\langlear{K}^0|m{Q}(m{\mu})|K^0
angle=rac{8}{3}f_K^2m_K^2m{B}_K(m{\mu})$$

Hot News:

This year, renewed interest on B_{κ} from phenomenology

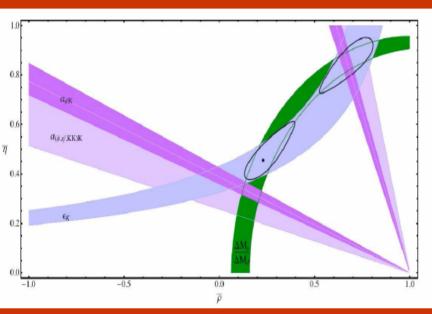
Tensions in the Unitarity Triangle ~2 σ

Lunghi, Soni '08

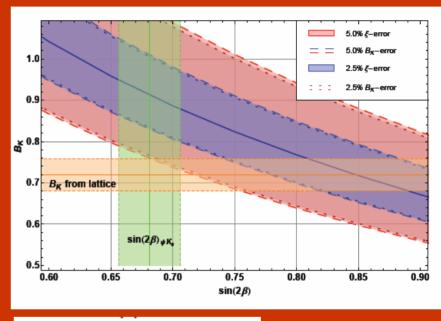
Buras, Guadagnoli '08'

non perturbative parameter $B_K = 0.72 \pm 0.013 \pm 0.037$ (Antonio et al. '07)

 \odot N_F=2+1, \odot DWF,


⊗ small volume and ⊗ no continuum limit

⊗ 2 sea q. masses ⊗ residual mass: m_{sea}/m_{res} ~ 1.6


Hot News:

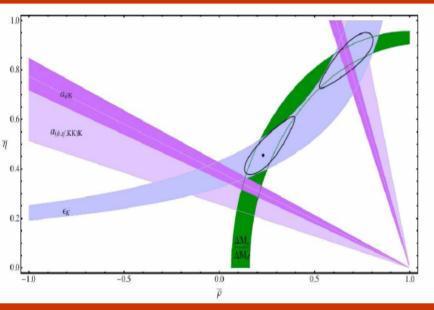
This year, renewed interest on B_{κ} from phenomenology

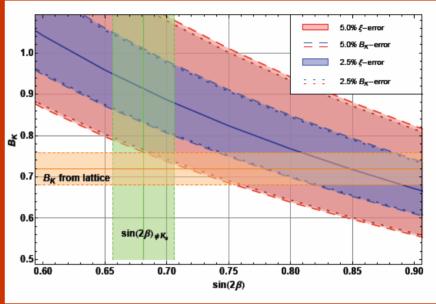
Tensions in the Unitarity Triangle ~2 σ

Lunghi, Soni '08

Buras, Guadagnoli '08'

 \Rightarrow NP phase in B_d mixing?


 \Rightarrow Additional CP violation in K mixing?


Hot News:

This year, renewed interest on B_{κ} from phenomenology

Tensions in the Unitarity Triangle ~2 σ

Lunghi, Soni '08

Buras, Guadagnoli '08'

New Physics?

It looks very premature, but

© Our B_K can help it and is welcome

 \otimes N_F=2, \otimes tmQCD,

⊗ O(a²) and good chirality

2008 B_K summary

$N_F = 2 + 1$:

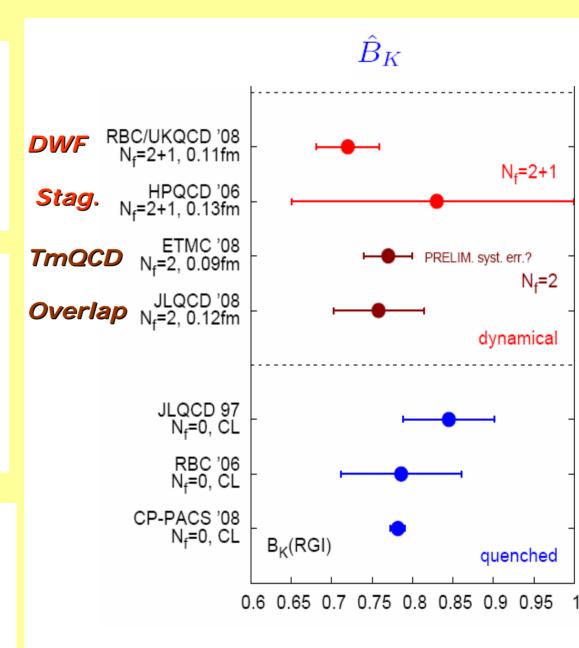
® no continuum limit

$$\Rightarrow$$
 a⁻¹=1.73 GeV,
L=2.74 fm, m _{π} >=330

⊗ 2 sea q. masses!!!

$N_F = 2$: tmQCD

© continuum limit


$$=> a^{-1} => 2.3 \text{ GeV},$$

L=2.2/2.9 fm, m_{\pi}>=300

- © sea q. masses dep.
- © Quenching the strange

$N_F = 2$: Overlap

⊗ no continuum limit

$$=> a^{-1}=1.67 \text{ GeV},$$

L=1.9 fm, m_{\pi}>=290

Enno E. Scholz - CKM08

OUR CALCULATION: RUN, post-lattice 2008

 $ightharpoonup \beta = 3.90$: higher statistics for lighter quarks

$\beta = 3.90$	aµ _{sea}	$L^3 \times T = 24^3 \times 48$	N _{meas}
	0.0040		400
	0.0064		200
	0.0085		200
	0.0100		200
$\beta = 3.90$	0.0040	$L^3 \times T = 32^3 \times 64$	$N_{\text{meas}} = 100$

► Lighter q. mass at 32³x 64 is running

$$\beta = 3.90$$
 0.0030

$$L^3 \times T = 32^3 \times 64$$

$$N_{\text{meas}} = 60$$

► Continuum Limit and scaling test with mixed action

	aµ _{sea}	$L^3 \times T = 32^3 \times 64$	N _{meas}
0 4.05	0.0030		200
$\beta = 4.05$	0.0060		150
	0.0080		220
	0.0060	$L^3 \times T = 24^3 \times 48$	210
$\beta = 3.8$	0.0080		170
	0.00110		180

OUR CALCULATION: Mixed action approach

(Frezzotti-Rossi, hep-lat/ 0407002)

Calculate the three-point correlator:

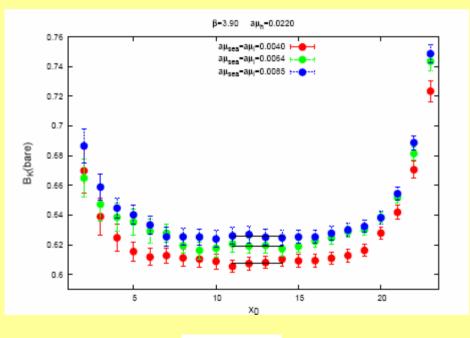
$$C_{KQK}(z_0 - x_0, z_0 - y_0) = \sum_{\overline{x}, \overline{y}, \overline{z}} \left\langle (\overline{d}' \gamma_5 s')(x) \ Q_{VV+AA}^{\Delta S=2}(z) \ (\overline{d} \gamma_5 s)(y) \right\rangle$$

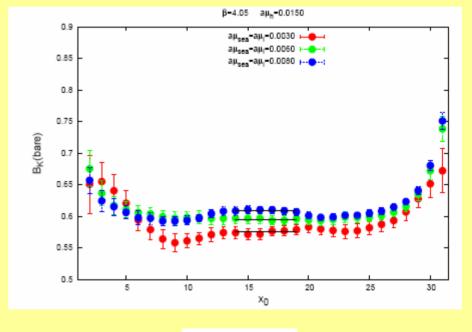
with the 4-fermion operator:

$$Q_{\nu\nu+AA}^{\Delta S=2} = 2\{ (\overline{s}\gamma_{\mu}d)(\overline{s}'\gamma_{\mu}d') + (\overline{s}\gamma_{\mu}\gamma_{5}d)(\overline{s}'\gamma_{\mu}\gamma_{5}d') + (\overline{s}\gamma_{\mu}d')(\overline{s}'\gamma_{\mu}d) + (\overline{s}\gamma_{\mu}\gamma_{5}d')(\overline{s}'\gamma_{\mu}\gamma_{5}d) \}$$

$$\phi_{K'} = \overline{d}' \gamma_5 s'$$
 $-r_{d'} = r_{s'} = 1$ (tm-like)

$$\phi_K = \overline{d}\gamma_5 s$$
 $r_d = r_s = 1$ (OS-like)

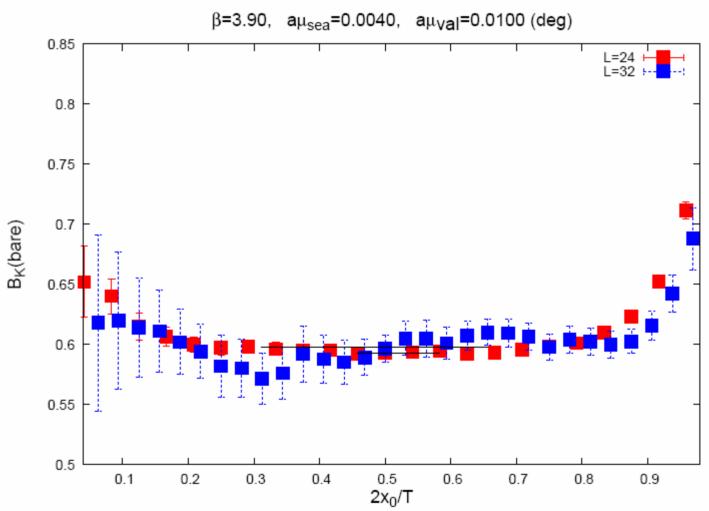



GAIN: no mixing in the renormalization of the 4-fermion operator + O(a) improvement

OUR CALCULATION: Quality of Plateau for B_K bare

$$\mathbf{R}_{\mathbf{B}_{K}} = \frac{8}{3} \frac{\mathbf{C}_{K'QK}^{(3)}(t - t_{L}, t - t_{R})}{\mathbf{C}_{K'}^{(2)}(t - t_{L})\mathbf{C}_{K}^{(2)}(t - t_{R})} \xrightarrow{t_{L} << t < t_{R}} \mathbf{B}_{K}$$

$$\mathbf{x}_0 = \mathbf{t}_{\mathrm{R}} - \mathbf{t}_{\mathrm{L}} = \frac{\mathrm{T}}{2}$$

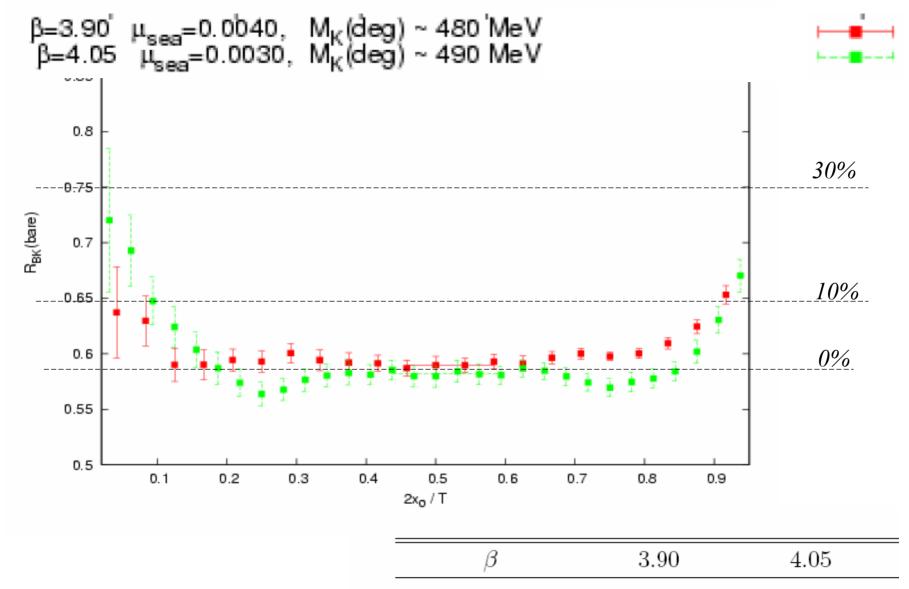

 $\beta = 4.05$

 $\beta = 3.9$

 $a\mu_h$ takes values around the strange quark mass, while the "light" valence quark mass is equal to the sea quark mass value.

► Finite volume effects:

$\beta = 3.90$ 0.0040	$L^3 \times T = 32^3 \times 64$	$N_{\text{meas}} = 100$
-----------------------	---------------------------------	-------------------------



► Lighter q. mass at higher volume is running

	$\beta = 3.90$	0.0030	$L^3 \times T = 32^3 \times 64$	$N_{\text{meas}} = 60$
--	----------------	--------	---------------------------------	------------------------

► Scaling test: No Anomalous SCALING for our Mixed action approach

Mind: renormalization c. by RI-MOM => see later for details

 \mathcal{Z}

0.965(38)

0.962(43)

Quantitative cross-check on the scaling => to prove our Mixed action approach

β	3.80	3.90	4.05
$B_K(\mathrm{bare})$	0.609(8)	0.586(06)	0.558(12)
$B_K^{\text{bare}}(a^{-1} =$	2GeV) B_K^{bare}	$(a^{-1} = 2.3 \text{GeV})$	$B_K^{bare}(a^{-1} = 2.9 \text{GeV})$

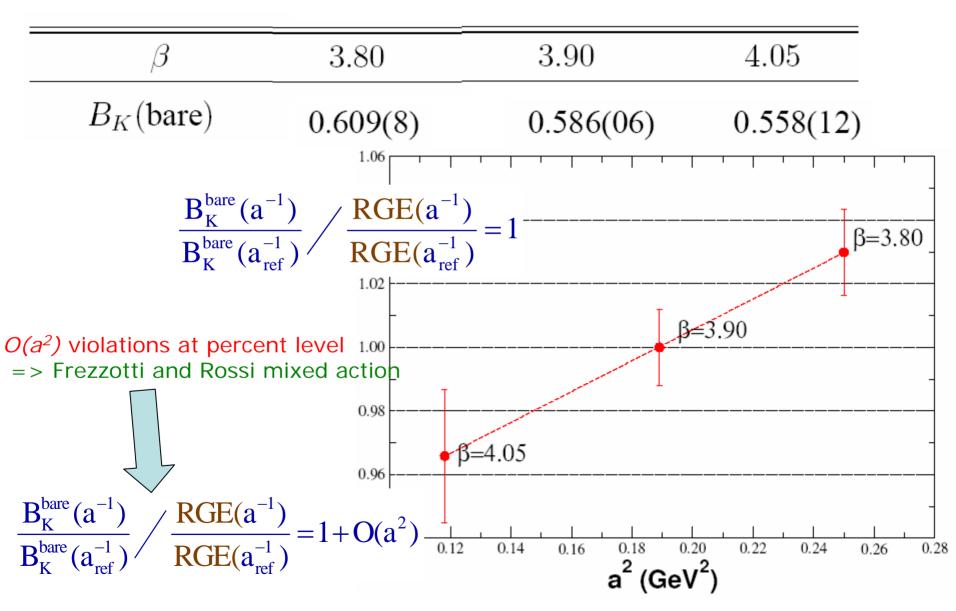
Quantitative cross-check on the scaling => to prove our Mixed action approach

β	3.80	3.90	4.05
$B_K(\mathrm{bare})$	0.609(8)	0.586(06)	0.558(12)
$\mathbf{B}_{\mathbf{K}}^{\mathrm{bare}}(\mathbf{a}^{-1}=2$	$2 \text{GeV})$ B_{K}^{bare}	$(a^{-1} = 2.3 \text{GeV})$	$B_K^{bare}(a^{-1} = 2.9 \text{GeV})$

 Assuming large a⁻¹, discretization errors are negligible and RG evolution is ok! namely,

$$\mathbf{B}_{K}^{\text{bare}}(\mathbf{a}^{-1}) = \mathbf{Cost}(\alpha_{s}^{-\gamma/\beta}(\mathbf{a}^{-1}) \times (1 + \dots)) - - - \mathbf{RGE}$$

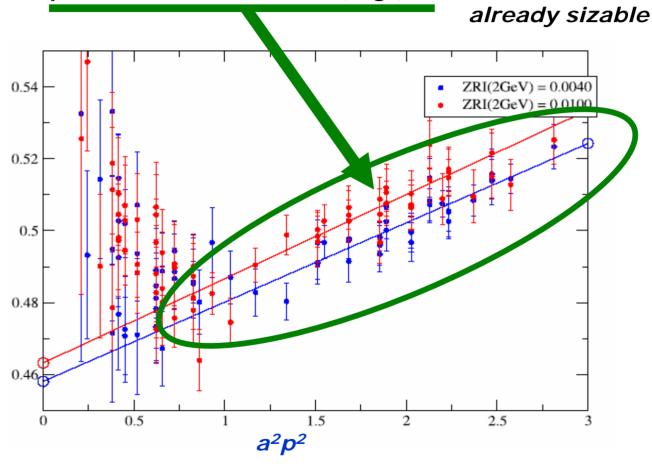
Quantitative cross-check on the scaling => to prove our Mixed action approach


β	3.80	3.90	4.05
$B_K(\mathrm{bare})$	0.609(8)	0.586(06)	0.558(12)
$B_K^{\text{bare}}(a^{-1} = 2$	2GeV) B_K^{bare}	$(a^{-1} = 2.3 \text{GeV})$	$B_K^{bare}(a^{-1} = 2.9 \text{GeV})$

 Assuming large a⁻¹, discretization errors are negligible and RG evolution is ok! namely,

$$B_{K}^{\text{bare}}(a^{-1}) = \text{Cost}(\alpha_{s}^{-\gamma/\beta}(a^{-1}) \times (1 + ...)) - - - RGE$$

$$\frac{B_{K}^{\text{bare}}(a^{-1})}{B_{K}^{\text{bare}}(a_{\text{ref}}^{-1})} = \frac{RGE(a^{-1})}{RGE(a_{\text{ref}}^{-1})} \longrightarrow \frac{B_{K}^{\text{bare}}(a^{-1})}{B_{K}^{\text{bare}}(a_{\text{ref}}^{-1})} / \frac{RGE(a^{-1})}{RGE(a_{\text{ref}}^{-1})} = 1$$

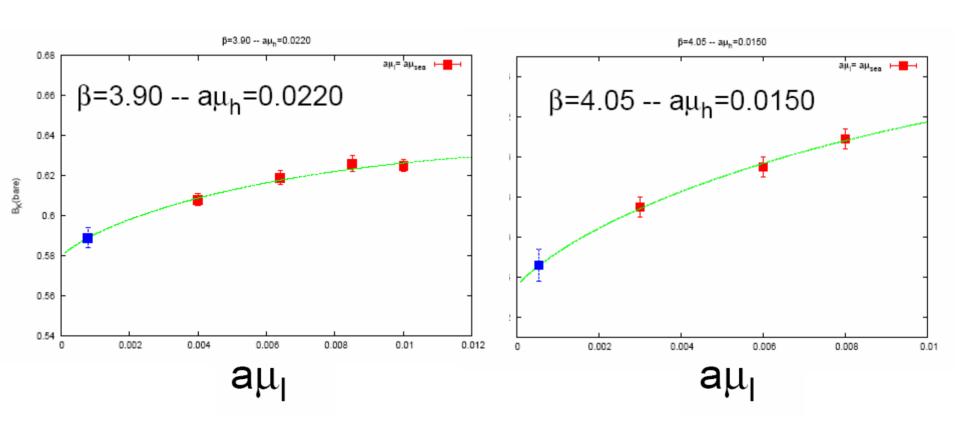

Quantitative cross-check on the scaling => to prove our Mixed action approach

► Renormalization Constants: BIG working in progress.

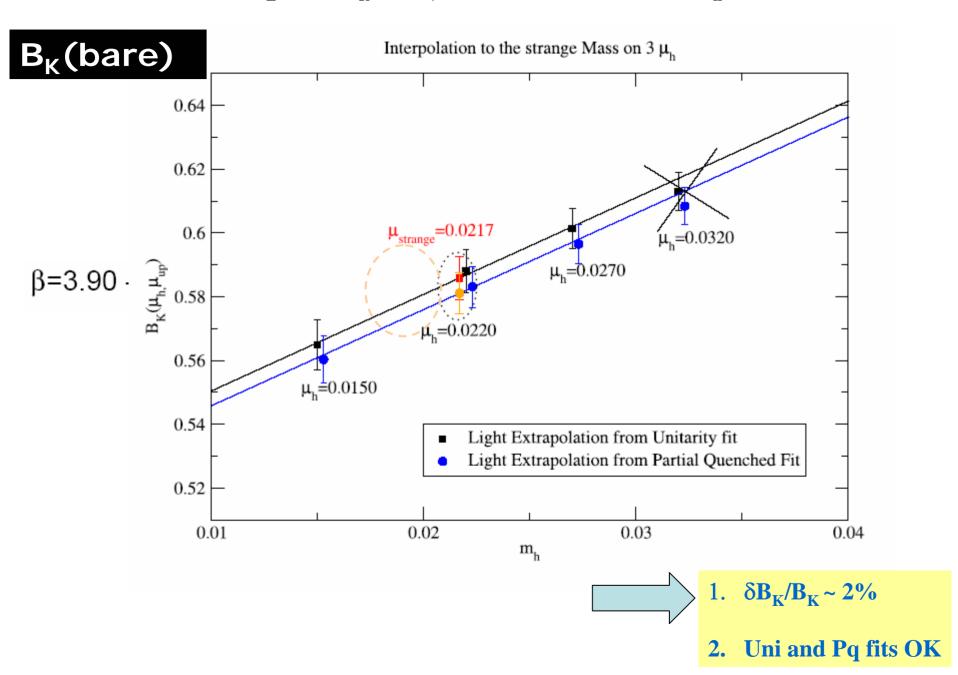
$$B_K(\text{ren}) = \mathcal{Z}B_K(\text{bare}) \text{ where } \mathcal{Z} = \mathcal{Z}_4/(Z_A Z_V)$$

A complete RI-MOM analysis will be ready in 2/3 weeks for all β s However, potential effects from $O(a^2g^2)$ look

- For the time beeping, we subtract them from a linear fit
- Next, we may need help from Harris Papadopoulos et al.

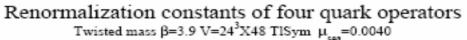

► Chiral-fit Setup: $SU(2)_L \times SU(2)_R$ fit (μ_v) + static strange quarks (μ_h)

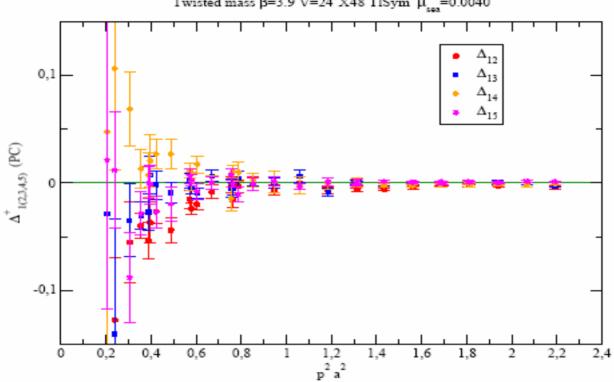
Unitarity case


$$B_{K}^{bare}(\mu_{h}, \mu_{v} = \mu_{sea}) = B_{\chi}^{bare}(\mu_{h}) \left[1 + \left(P_{v}(\mu_{h}) + P_{sea}(\mu_{h}) \right) \mu_{sea} - \frac{2B_{0}}{32\pi^{2} f_{0}^{2}} \mu_{sea} \log \mu_{sea} \right]$$

Sharpe & Zhang (1996)

B_K(bare)

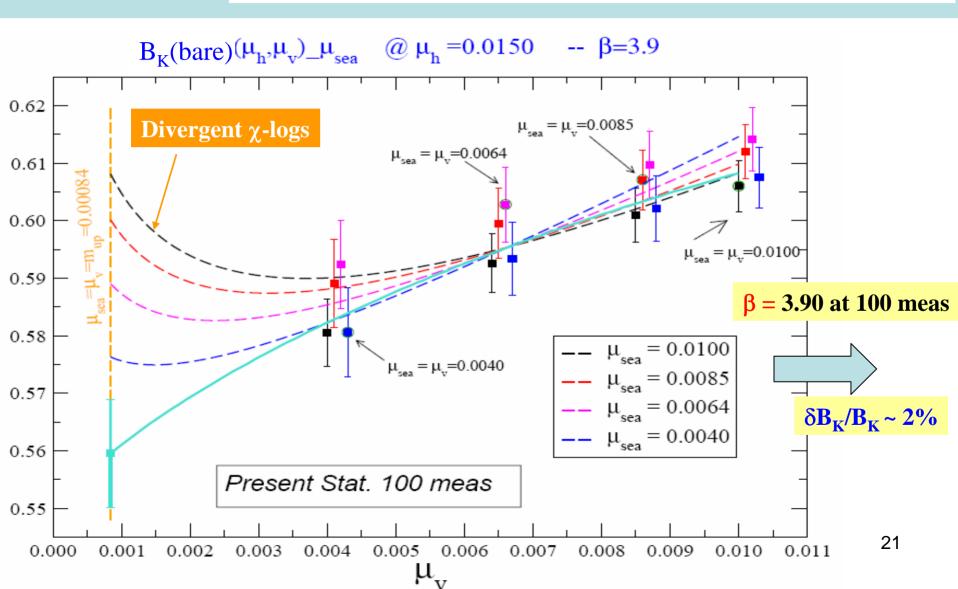

► Chiral-fit Setup: $SU(2)_L \times SU(2)_R$ fit (μ_v) + static strange quarks (μ_h)



► *I schedule one month to finish*

β	3.90	4.05	3.80
${\mathcal Z}$	0.965(38)	0.962(43)	
$B_K(\text{bare})$	0.586(06)	0.562(43)	0.609(8)
$B_K(\overline{\rm MS};\ 2\ { m GeV})$	0.565(6)[22]	0.537(12)[23]	_

$$B_K(\text{ren}) = \mathcal{Z}B_K(\text{bare}) \text{ where } \mathcal{Z} = \mathcal{Z}_4/(Z_A Z_V)$$


The mixing coefficients with other four-fermion operators with "wrong chirality".

coefficients are compatible with zero

► Chiral-fit Setup: $SU(2)_L \times SU(2)_R$ fit (μ_v) + static strange quarks (μ_h)

Partial-Quenched case

$$B_{K}^{bare}(\mu_{h}, \mu_{v}: \mu_{sea}) = B_{\chi}^{bare}(\mu_{h}) \left[1 + P_{v}(\mu_{h})\mu_{v} + P_{sea}(\mu_{h})\mu_{sea} - \frac{2B_{0}}{32\pi^{2}f_{0}^{2}} \frac{\mu_{v}log\mu_{sea}}{\mu_{v}log\mu_{sea}} \right]$$

