Observable-dependent test of maximal twist

Petros Dimopoulos

Roberto Frezzotti

a presentation based on the notes prepared by:
P. Dimopoulos, R. Frezzotti, G. Herdoiza and G.C. Rossi

Safe observable-dependent estimates of the systematic effects due to the uncertainty on κ_{cr} .

► Implementation on the observables F_{ps} , M_{ps}^2 and m_N

► Similar methods may be applied to other observables

Assume simulations that have been done at some β with : $m_0 - M_{cr}^{opt} \neq 0$ The action in **twisted mass basis** reads:

$$S_F = \bar{\chi} [\gamma \cdot \tilde{\nabla} + W_{cr} + (m_0 - M_{cr}^{opt}) + i\mu\gamma_5\tau^3] \chi$$
with: $W_{cr} = -ar \frac{1}{2} \nabla_{\nu}^* \nabla_{\nu} + M_{cr}^{opt}$ (the optimal critical Wilson term)

The renormalised quark mass is given:

$$m_{\rm R} = Z_{\rm S^0}^{-1} (m_{\rm 0} - M_{\rm cr}^{\rm opt}) = Z_A Z_P^{-1} m_{\rm PCAC} \,, \qquad \mu_{\rm R} = Z_P^{-1} \mu \,.$$

The action in **physical basis** is:

$$S_F = \bar{\psi} [\gamma \cdot \tilde{\nabla} + e^{-i\omega\gamma_5\tau^3} W_{\rm cr} + M] \psi$$
 with:
$$M = \sqrt{(m_0 - M_{\rm cr}^{\rm opt})^2 + \mu^2}, \qquad \omega = \arctan[\mu/(m_0 - M_{\rm cr}^{\rm opt})]$$
 and fields given by:
$$\psi = e^{i\omega\gamma_5\tau^3/2} \chi, \ \overline{\psi} = \overline{\chi} \ e^{i\omega\gamma_5\tau^3/2} \qquad (\textit{angle ω not known})$$

The twisted angle α is estimated in terms of the renormalised quark masses:

$$\alpha \equiv \arctan(\mu_R/m_R)$$
, $\theta \equiv \pi/2 - \alpha$

and θ is the deviation from $\pi/2$.

The *renormalised* quark mass is given by:

$$M_R = \sqrt{m_R^2 + \mu_R^2} = m_R / \sin(\theta) = \mu_R / \cos(\theta)$$

The effective Symanzik action which corresponds for the case of $\theta \neq 0$ is:

$$\begin{split} \mathcal{L}_{\mathrm{Sym}} &= \mathcal{L}_{4}^{YM} + \bar{\psi}(D + M_{\mathrm{R}})\psi + a\mathcal{L}_{5} + \mathrm{O}(a^{2})\,,\\ \mathcal{L}_{5} &= b_{1}[\sin(\theta)\bar{\psi}i\sigma \cdot F\psi + \cos(\theta)\bar{\psi}\gamma_{5}\tau^{3}\sigma \cdot F\psi] + b_{4}M_{\mathrm{R}}\sin(\theta)\mathcal{L}_{4}^{YM} + \\ &+ [b_{5}(M_{\mathrm{R}}\sin(\theta))^{2} + b_{7}(M_{\mathrm{R}}\cos(\theta))^{2}][\sin(\theta)\bar{\psi}\psi - \cos(\theta)\bar{\psi}i\gamma_{5}\tau^{3}\psi]\,. \end{split}$$

Implications

▶ Data have to be interpreted in terms of the renormalised quark mass:

$$M_R = \mu_R / \sin(\alpha) = \mu_R / \cos(\theta) \neq \mu_R$$

 $M_R = \mu_R / \sin(\alpha) = \mu_R / \cos(\theta) \neq \mu_R$ > Operators allowed to rotate *must* rotate, e.g.

$$\left[A_{\mu}^{1}\right]_{R} \rightarrow \cos(\theta)\left[A_{\mu}^{1}\right]_{R} + \sin(\theta)\left[V_{\mu}^{2}\right]_{R} + O(a)$$

"Analytical" estimates

ightharpoonup Existence of $O(\alpha\theta)$ discretization errors in hadron masses and matrix elements induced by of L_5 . $\sin(\theta)\overline{\psi}i\sigma\cdot F\psi$

Estimates from the fits

The maximal twist quality test

For all the values of β , we imagine to work at the same value of the twisted renormalised quark mass:

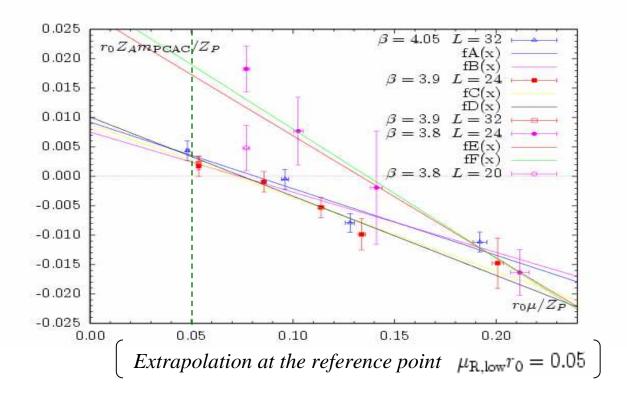
$$\mu_{\rm R,low} r_0 = 0.05$$

We are off $m_{PCAC}=0$ by:

$$\Delta_{m,\text{low}} = \sqrt{[m_{\text{PCAC}}^2 + \sigma^2(m_{\text{PCAC}})]|_{\mu_{\text{R,low}}}}$$

The deviation of the twisted angle from $\pi/2$ is estimated by:

$$\theta_{\text{low}} \equiv \arctan[Z_A \Delta_{m,\text{low}}/\mu], \qquad \theta_{\text{low}} = \theta_{\text{low}}(a\mu, \beta)$$



For our simulations:

$$\begin{array}{lll} \beta = 3.8 \,, a\mu_{\rm low} = 0.0039 & \Rightarrow & a\Delta_{m,{\rm low}} = 0.00183 \\ \beta = 3.9 \,, a\mu_{\rm low} = 0.0037 & \Rightarrow & a\Delta_{m,{\rm low}} = 0.00027 \\ \beta = 4.05 \,, a\mu_{\rm low} = 0.0031 & \Rightarrow & a\Delta_{m,{\rm low}} = 0.00031 \end{array}$$

β	$Z_P^{RI'}(2.3 \text{ GeV})$	Z_A	$am_{PCAC} _{\mu_{low}}$	r ₀ /a
3.80	0.348(7)	0.75(1)	0.00180(33)	4.46(3)
3.90	0.390(5)	0.76(1)	0.00026(09)	5.22(2)
4.05	0.413(7)	0.77(1)	0.00029(11)	6.61(3)

$$\theta_{low} = \theta_{low}(a\mu, \beta)$$

ensembles	$\beta = 3.80$	$\beta = 3.90$	$\beta = 4.05$
$\mu = \mu_{low}$	0.338	0.055	0.077
B_1, C_1		0.051	0.079
$A_1, B_2,$	0.225	0.032	
$A_2 \ B_3, \ C_2$	0.170	0.024	0.040
$A_3 B_4, C_3$	0.124	0.021	0.030
A_4 B_5 , C_4	0.083	0.014	0.020
B_6, C_5		0.051	0.040

Test Condition: Statistical error \geq Systematic uncertainties

$$\sigma_{m_{\rm PS}^2 r_0^2} \gtrsim \left\{ \left| \frac{\partial m_{\rm PS}^2}{\partial M_{\rm R}} \right|^{\rm cont} \delta M_{\rm R} \right| + \left| u \theta_{\rm low} \overline{C}_m r_0^{-2} \right| \right\} r_0^2$$

$$\sigma_{f_{\rm PS} r_0} \gtrsim \left\{ \left| \frac{\partial f_{\rm PS}}{\partial M_{\rm R}} \right|^{\rm cont} \delta M_{\rm R} + (\cos(\theta_{\rm low})^{-1} - 1) f_{\rm PS} \right| + \left| u \theta_{\rm low} \overline{C}_f r_0^{-1} \right| \right\} r_0$$

$$\sigma_{m_{\rm N} r_0} \gtrsim \left\{ \left| \frac{\partial m_{\rm N}}{\partial M_{\rm R}} \right|^{\rm cont} \delta M_{\rm R} \right| + \left| u \theta_{\rm low} \overline{C}_N r_0^{-1} \right| \right\} r_0 \qquad \text{(where } u = a / r_0)$$

- Statistical error: $\sigma_Y = \sigma_Y^{\text{raw}} + \left| \frac{\partial Y}{\partial X} \right| \sigma_X$ (linear sum due to correlations)
- **Systematic uncertainties:**
 - ► For: $Y = f_{PS}, m_{PS}^2, m_N$

$$\frac{\partial Y}{\partial M_{\rm R}}\bigg|^{\rm cont}\,\delta M_{\rm R} = \left.\frac{\partial Y}{\partial \mu_{\rm R}}\right|^{\rm cont}\,\frac{\partial \mu_{\rm R}}{\partial M_{\rm R}}\bigg|^{\rm cont}\,\delta M_{\rm R} = \left.\frac{\partial Y}{\partial \mu_{\rm R}}\right|^{\rm cont}\mu_{\rm R}(1-\cos(\theta_{\rm low})^{-1})|^{\beta}$$

with:
$$\delta M_R = \mu_R(\cos(\theta_{low})^{-1} - 1)|^{\beta} \sim \theta_{low}^2$$

- \blacktriangleright $(\cos(\theta_{\text{low}})^{-1} 1)f_{\text{PS}}$ comes from the rotation of the operator
- " $u\theta_{low}\overline{C}_{m,f,N}$ " quantifies the $O(a\theta)$ corrections

Estimates of \overline{C}_{Y}

Do a Comb in ed chiral fit including θ and $O(a\theta)$ corrections (μ_R independent variable):

$$\begin{split} f_{\mathrm{PS}r_0} &= r_0 f_0 \left[1 - 2\xi \log \left(\frac{\chi_{\mu}}{\Lambda_4^2} \right) + u^2 D_f^0 \right] \ K_f^{\mathrm{CDH}}(\sqrt{\chi_{\mu}} L) + \\ &+ \left\{ \frac{\partial f_{\mathrm{PS}}}{\partial M_{\mathrm{R}}} \right|^{\mathrm{contt}} \delta M_{\mathrm{R}} - (\cos (\tilde{\theta}_{\mathrm{low}})^{-1} - 1) f_{\mathrm{PS}} + u \tilde{\theta}_{\mathrm{low}} C_f r_0^{-1} \right\} r_0 \\ &r_0^2 m_{\mathrm{PS}}^2 = \chi_{\mu} r_0^2 \left[1 + \xi \log \left(\frac{\chi_{\mu}}{\Lambda_2^2} \right) + u^2 D_m^0 \right] \ \left(K_m^{\mathrm{CDH}}(\sqrt{\chi_{\mu}} L) \right)^2 + \\ &+ \left\{ \frac{\partial m_{\mathrm{PS}}^2}{\partial M_{\mathrm{R}}} \right|^{\mathrm{contt}} \delta M_{\mathrm{R}} + u \tilde{\theta}_{\mathrm{low}} C_m r_0^{-2} \right\} r_0^2 \,, \\ &m_{\mathrm{N}} r_0 = r_0 M_N - \frac{4c_1}{r_0} \chi_{\mu} r_0^2 - \frac{6g_A^2}{32\pi f_0^2 r_0^2} (\chi_{\mu} r_0^2)^{3/2} + u^2 D_N^0 r_0 M_N + \\ &+ \left\{ \frac{\partial m_{\mathrm{N}}}{\partial M_{\mathrm{R}}} \right|^{\mathrm{contt}} \delta M_{\mathrm{R}} + u \tilde{\theta}_{\mathrm{low}} C_N r_0^{-1} \right\} r_0 \,, \end{split}$$

$$\xi \equiv \frac{2B_R \mu_R}{(4\pi f_0)^2} , \qquad \chi_\mu \equiv 2B_R \mu_R$$

$$\text{For} \qquad \quad \tilde{\theta}_{\text{low}} \equiv \arctan[Z_A m_{\text{PCAC}}|_{\mu_{\text{low}}}/\mu] \,, \qquad \tilde{\theta}_{\text{low}} = \tilde{\theta}_{\text{low}}(a\mu,\beta)$$

ensembles	$\beta = 3.80$	$\beta = 3.90$	$\beta = 4.05$
$\mu = \mu_{low}$	0.338	0.055	0.077
B_1, C_1		0.049(17)	0.075(29)
$A_1, B_2,$	0.221(39)	0.031(11)	
$A_2 B_3, C_2$	0.167(30)	0.023(08)	0.038(14)
$A_3 B_4, C_3$	0.122(22)	0.020(07)	0.028(11)
$A_4 B_5, C_4$	0.082(15)	0.013(05)	0.019(07)
B_6, C_5		0.049(17)	0.038(14)

Final combined fit of "safe" data

Use the data that pass the Maximal Twist test do the combined fit:

$$\begin{split} r_0 f_{\rm PS}(r_0 \mu_R) &= r_0 f_0 \left[1 - 2\xi \log \left(\frac{\chi_\mu}{\Lambda_4^2} \right) + u^2 D_f^0 \right] \, K_f^{\rm CDH}(\sqrt{\chi_\mu} L) \\ (r_0 m_{\rm PS})^2 (r_0 \mu_R) &= \chi_\mu r_0^2 \left[1 + \xi \log \left(\frac{\chi_\mu}{\Lambda_3^2} \right) + u^2 D_m^0 \right] \, K_m^{\rm CDH}(\sqrt{\chi_\mu} L)^2 \\ r_0 m_N(r_0 \mu_R) &= r_0 M_N - \frac{4c_1}{r_0} \chi_\mu r_0^2 - \frac{6 \, g_A^2}{32 \pi f_0^2 r_0^2} (\chi_\mu r_0^2)^{3/2} + u^2 D_N^0 r_0 M_N \\ \xi &\equiv \frac{2B_R \mu_R}{(4 \pi f_0)^2} \, , \qquad \chi_\mu \equiv 2B_R \mu_R \end{split}$$

... and obtain the LEC's

Combined Fits for $\beta = 3.90$ and 4.05

- Use Eq. $[\spadesuit]$ with D's=0
- Bootstrap method for the error analysis: create bootstrap samples from the raw data for m_{ps}^2 and F_{ps} ; m_N samples are generated according a gaussian distribution (following C. Urbach); Pick up values Z_p from a gaussian distribution to form μ_R . Apply the Grid search method.
- Combined-concatenated chiral fits: chain application of the fits on m_{ps}^2 , F_{ps} and m_N until convergence is succeeded.
- add (linearly) in the end of the procedure the error of r_0/a

 $\beta = 3.90: \ \mu = 0.0040, 0.0040 (L = 32), 0.0064, 0.0085, 0.0100$

 $\beta = 4.05$: $\mu = 0.0030$, 0.0060, 0.0060 (L = 24), 0.0080

 $r_0f_0, 2r_0B_0$ (renormalised), $r_0\Lambda_3, r_0\Lambda_4, r_0M_N, c_1, g_A, R_1$

 $(R_I = [r0/a]_{3.90} / [r0/a]_{4.05})$

	Combined fits for $\beta = 3.90$ and 4.05							
	C. Urbach	Bootstrap method	Combined-Concatenated					
$2r_0B_0$	10.06(20)	10.30(24)	10.12(25)					
$r_0 f_0$	0.275(2)	0.273(5)	0.274(4)					
$\tau_0 M_N$	2.01(13)	2.04(12)	2.05(18)					
$\tau_0\Lambda_3$	1.75(7)	1.98(8)	1.87(18)					
$\tau_0\Lambda_4$	3.14(4)	3.13(9)	3.13(7)					
c_1	-1.13(26)	-1.05(17)	-1.04(36)					
g_A	1.13(17)	1.06(15)	1.06(26)					
R_1	0.782(3)	0.785(6)	0.790(5)					
χ^2/dof	18.5/19	0.30	0.77					

$C\ o\ m\ b\ i\ n\ e\ d \quad F\ i\ t\ s \quad f\ o\ r\ \beta = 3.\ 90\ and\ 4.\ 05 \\ +\ O(a^2)\ terms$

[Use Eq. [• •]]

Combined fits for	$\beta = 3.90$ and 4.05	plus $O(a^2)$	terms
-------------------	---------------------------	---------------	-------

	C. Urbach	Bootstrap metho
$2r_0B_0$	10.44(70)	10.80(51)
$r_0 f_0$	0.265(6)	0.264(9)
r_0M_N	1.96(16)	2.05(10)
$r_0\Lambda_3$	1.76(7)	2.12(15)
$r_0\Lambda_4$	3.06(6)	3.06(11)
c_1	-1.02(30)	-0.98(14))
g_A	1.04(24)	0.98(12)
R_1	0.790(3)	0.792(6))
D_m	-1(2)	-1.5(1.4)
D_f	0.7(8)	0.6(5)
D_n	1(1)	0.1(2)
χ^2/dof	15.3/16	0.94

Combined Fits for $\beta = 3.90$, 4. 05 and 3.80 + O(a0) terms

[Use Eq. [and the bootstrap method]

$$\beta = 3.90: \ \mu = 0.0040, 0.0040 (L = 32), 0.0064, 0.0085, 0.0100$$

$$\beta = 4.05: \ \mu = 0.0030$$
 , 0.0060 , 0.0060 ($L = 24$), 0.0080

$$\beta = 3.80$$
: $\mu = 0.0060, 0.0080, 0.0110$

Combined fits for $\beta = 3.90$, 4.05 and 3.80 plus $O(a^2)$ and $O(a\theta_{low})$ terms

	only $O(a\theta_{low})$ terms	$O(a\theta_{low})$ with $O(a^2)$ fixed	without $O(a^2)$ and $O(a\theta_{low})$
$2r_0B_0$	10.18(39)	10.80(50)	9.50(39)
$r_0 f_0$	0.275(6)	0.268(4)	0.273(6)
$r_0\Lambda_3$	2.13(18)	2.33(14)	1.74(12)
$r_0\Lambda_4$	3.18(11)	3.04(10)	3.40(8)
C_f	-0.14(3)	-0.27(6)	_
C_m	-1.06(30)	-0.44(27)	_
C_n	-0.24(7)	_	_
χ^2/dof	0.4	0.3	1.2

 $\beta = 3.80$

$(M_{ps}^2 \,\,\, {\rm in}\,\, {\rm units}\,\, {\rm of}\,\, {\rm a\text{--}lattice}\,\, {\rm spacing})$

αμ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}
0.0060	3.3×10^{-4}	5.6×10^{-4}	N	6.2×10^{-4}	2.6×10^{-3}
0.0080	3.3×10^{-4}	7.4×10^{-4}	N	4.5×10^{-4}	2.0×10^{-3}
0.0110	2.4×10^{-4}	1.1×10^{-3}	?	3.4×10^{-4}	1.5×10^{-3}
0.0165	3.0×10^{-4}	1.7×10^{-3}	Y	2.5×10^{-4}	1.0×10^{-3}

 $\beta = 3.80$

$(F_{ps} \,\,\, {\rm in\, units\,\, of\,\, a\text{--lattice\, spacing}})$

аμ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}	σ_{op}^{syst}
0.0060	8.0×10^{-4}	2.5×10^{-4}	N	2.7×10^{-4}	1.4×10^{-3}	1.8×10^{-3}
0.0080	4.0×10^{-4}	2.8×10^{-4}	N	1.7×10^{-4}	1.1×10^{-3}	1.2×10^{-3}
0.0110	3.0×10^{-4}	2.9×10^{-4}	?	0.9×10^{-4}	8.0×10^{-4}	7.0×10^{-4}
0.0165	2.0×10^{-4}	2.6×10^{-4}	?Y	0.5×10^{-4}	5.0×10^{-4}	3.0×10^{-4}

 $\beta = 3.80$

$(m_N \,\, { m in} \, { m units} \, { m of} \, { m a-lattice} \, { m spacing})$

аµ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}
0.0060	9.3×10^{-3}	2.1×10^{-3}	Y	2.2×10^{-3}	2.6×10^{-3}
0.0080	8.7×10^{-3}	$2.3 imes 10^{-3}$	Y	1.4×10^{-3}	1.9×10^{-3}
0.0110	9.0×10^{-3}	2.3×10^{-3}	Y	0.7×10^{-3}	1.4×10^{-3}
0.0165	5.7×10^{-3}	2.2×10^{-3}	Y	0.2×10^{-3}	1.0×10^{-3}

 $\beta = 3.90$

$(M_{ps}^2 \,\,\, { m in}\,\, { m units}\, { m of}\,\, { m a-lattice}\, { m spacing})$

αμ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}
0.0040	1.9×10^{-4}	2.2×10^{-4}	Y	0.2×10^{-4}	3.7×10^{-4}
0.0064	1.4×10^{-4}	3.4×10^{-4}	Y	0.1×10^{-4}	2.3×10^{-4}
0.0085	$1.9 imes 10^{-4}$	4.5×10^{-4}	Y	0.9×10^{-5}	1.7×10^{-4}
0.0100	2.1×10^{-4}	$5.4 imes 10^{-4}$	Y	0.8×10^{-5}	1.5×10^{-4}
0.0040(L=32)	0.5×10^{-4}	2.2×10^{-4}	?Y	0.2×10^{-4}	3.7×10^{-4}

 $\beta = 3.90$

$(F_{ps}$ in units of a-lattice spacing)

аµ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}	σ_{op}^{syst}
0.0040	4.0×10^{-4}	1.2×10^{-4}	Y	0.1×10^{-4}	2.5×10^{-4}	0.8×10^{-4}
0.0064	4.0×10^{-4}	1.4×10^{-4}	Y	0.5×10^{-5}	1.6×10^{-4}	0.3×10^{-4}
0.0085	2.0×10^{-4}	1.5×10^{-4}	Y	0.3×10^{-5}	1.2×10^{-4}	0.2×10^{-4}
0.0110	2.0×10^{-4}	$1.6 imes 10^{-4}$	Y	0.2×10^{-5}	1.0×10^{-4}	0.2×10^{-4}
0.0040(L=32)	2.0×10^{-4}	1.2×10^{-4}	?Y	0.1×10^{-4}	2.5×10^{-4}	0.8×10^{-4}

 $\beta = 3.90$

$(m_N$ in units of a-lattice spacing)

аμ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}
0.0040	4.9×10^{-3}	0.9×10^{-3}	Y	8.8×10^{-5}	4.2×10^{-4}
0.0064	4.2×10^{-3}	$1.2 imes 10^{-3}$	Y	4.4×10^{-5}	2.8×10^{-4}
0.0085	5.9×10^{-3}	$1.3 imes 10^{-3}$	Y	2.6×10^{-5}	2.1×10^{-4}
0.0100	4.6×10^{-3}	$1.3 imes 10^{-3}$	Y	2.0×10^{-5}	1.8×10^{-4}
0.0040(L=32)	4.8×10^{-3}	0.9×10^{-3}	Y	8.8×10^{-5}	4.2×10^{-4}

 $\beta=4.05$

$(M_{ps}^2 \,\,\, {\rm in}\,\, {\rm units}\,\, {\rm of}\,\, {\rm a-lattice}\,\, {\rm spacing})$

αμ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}
0.0030	1.2×10^{-4}	2.0×10^{-4}	Y	4.2×10^{-5}	2.8×10^{-4}
0.0060	1.7×10^{-4}	4.0×10^{-4}	Y	2.1×10^{-5}	1.4×10^{-4}
0.0080	1.7×10^{-4}	5.4×10^{-4}	Y	1.6×10^{-5}	1.0×10^{-4}

 $\beta=4.05$

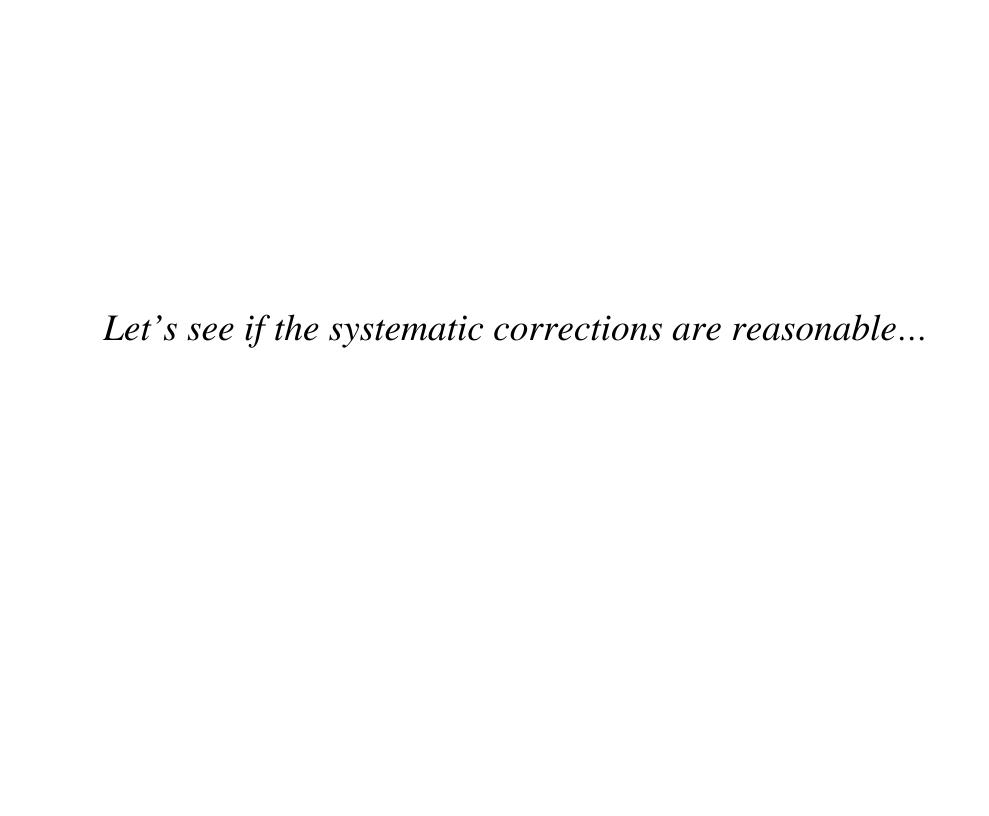
$(F_{ps} \,$ in units of a-lattice spacing)

аμ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}	σ_{op}^{syst}
0.0030	3.5×10^{-4}	1.2×10^{-4}	Y	2.5×10^{-5}	2.4×10^{-4}	1.4×10^{-4}
0.0060	4.0×10^{-4}	1.6×10^{-4}	Y	0.8×10^{-5}	1.2×10^{-4}	0.4×10^{-4}
0.0080	5.0×10^{-4}	1.6×10^{-4}	Y	0.5×10^{-5}	0.9×10^{-4}	0.2×10^{-4}

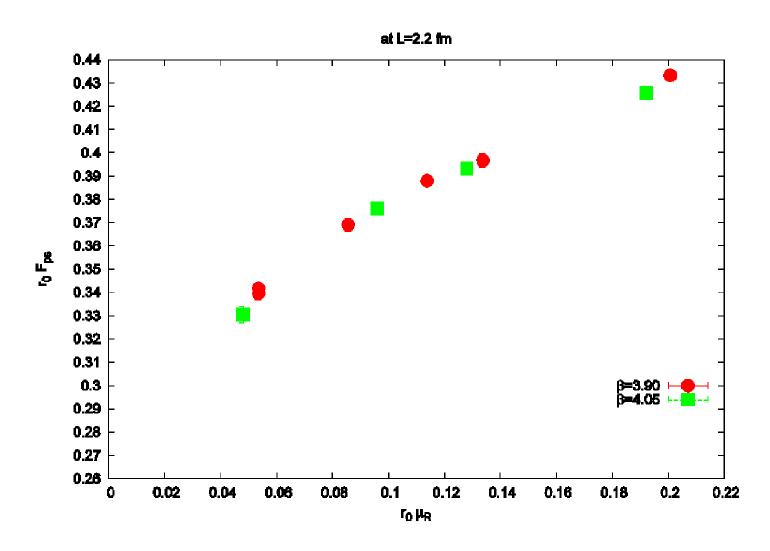
 $\beta=4.05$

$(m_N \,\, { m in} \, { m units} \, { m of} \, { m a-lattice} \, { m spacing})$

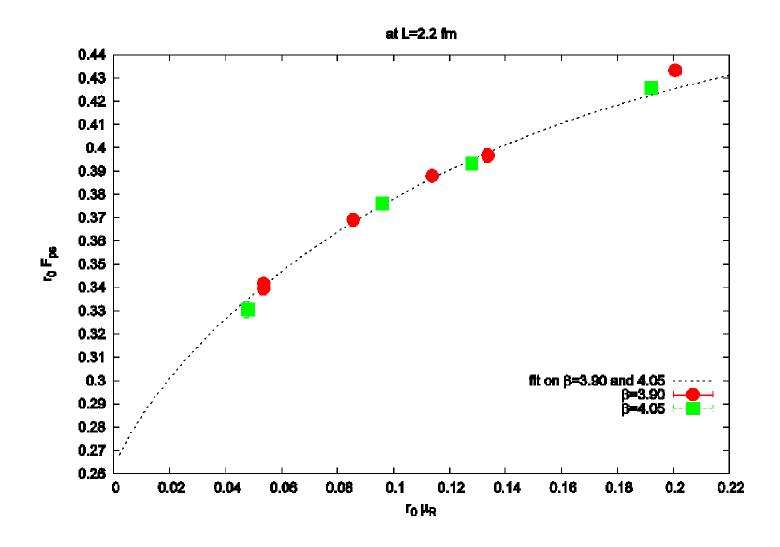
аµ	σ_1^{stat}	σ_2^{stat}		σ_M^{syst}	σ_{fit}^{syst}
0.0030	8.4×10^{-3}	9.2×10^{-4}	Y	1.9×10^{-4}	4.1×10^{-4}
0.0060	5.8×10^{-3}	1.3×10^{-4}	Y	0.7×10^{-4}	2.2×10^{-4}
0.0080	3.6×10^{-3}	1.3×10^{-4}	Y	0.4×10^{-4}	1.1×10^{-4}



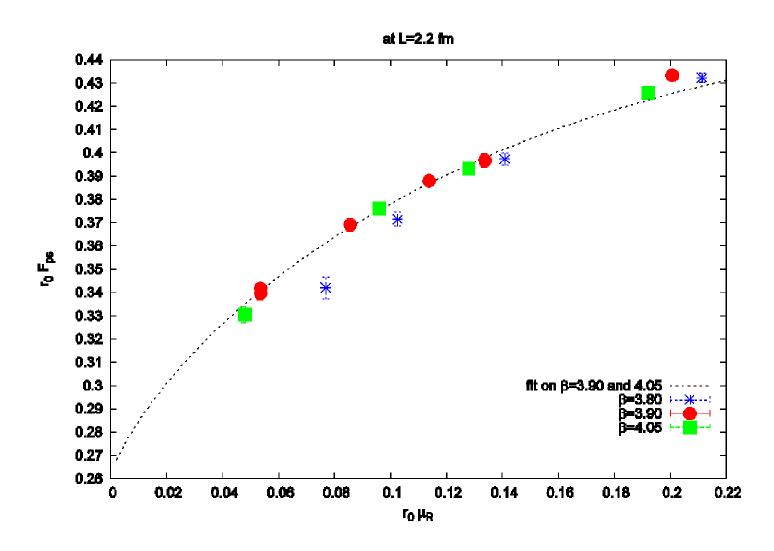
 $r_0 F_{ps}$ vs. $r_0 \mu_R$



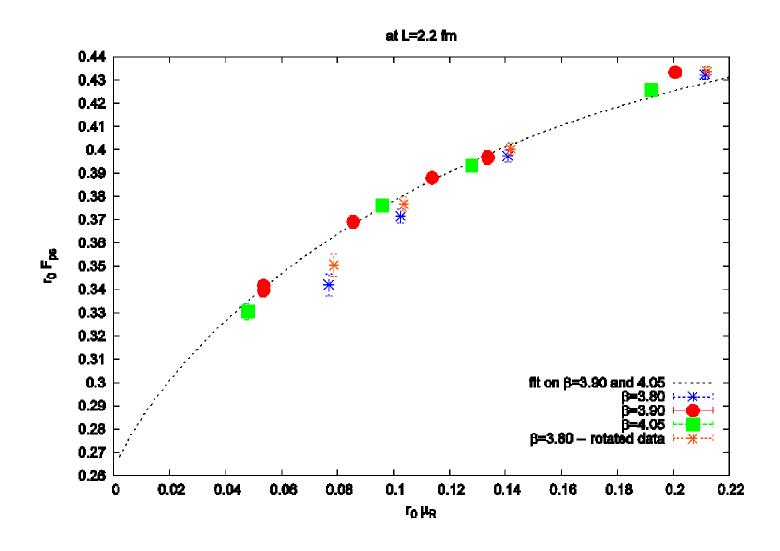
 $r_0 F_{ps}$ vs. $r_0 \mu_R$



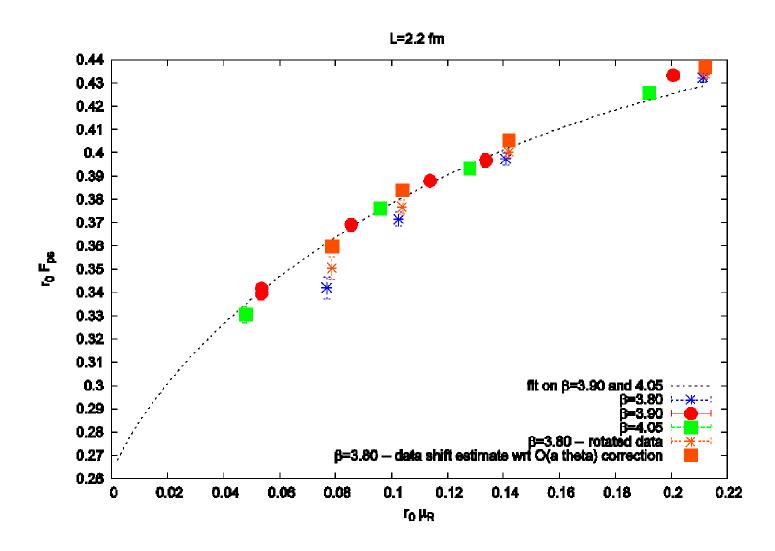
 $r_0 F_{ps}$ vs. $r_0 \mu_R$



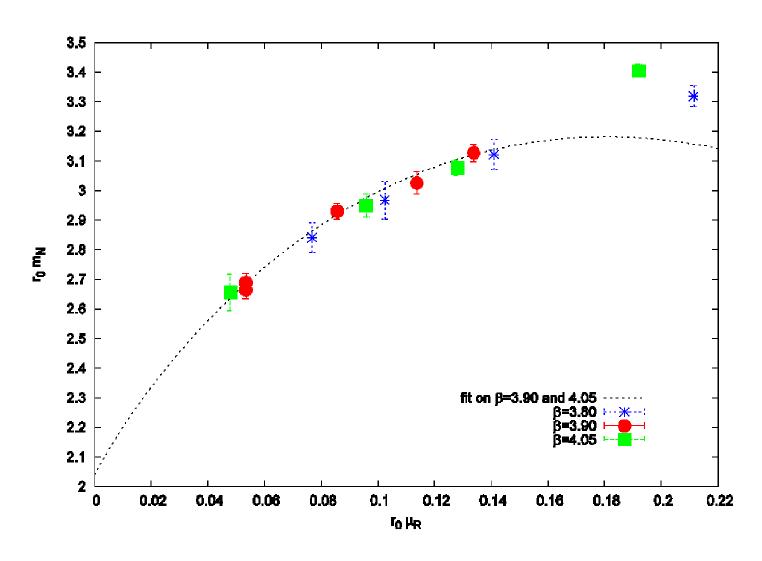
 $r_0 F_{ps}$ vs. $r_0 \mu_R$



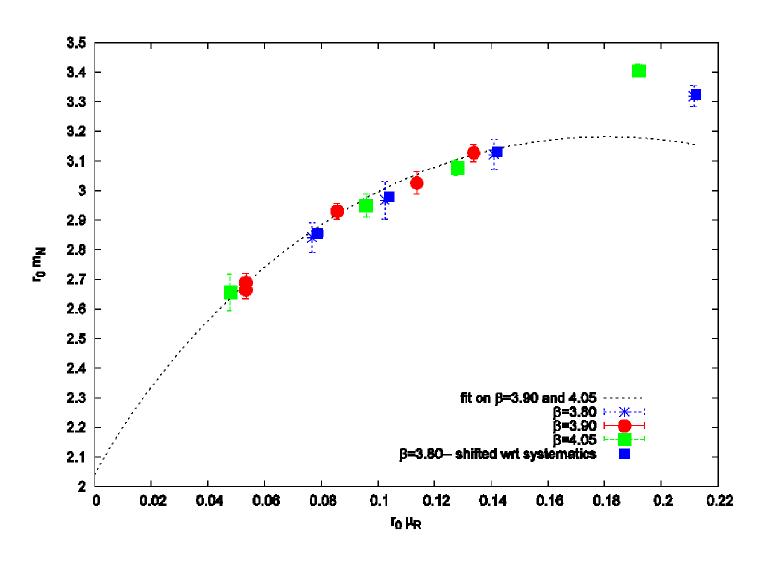
 $r_0 F_{ps}$ vs. $r_0 \mu_R$



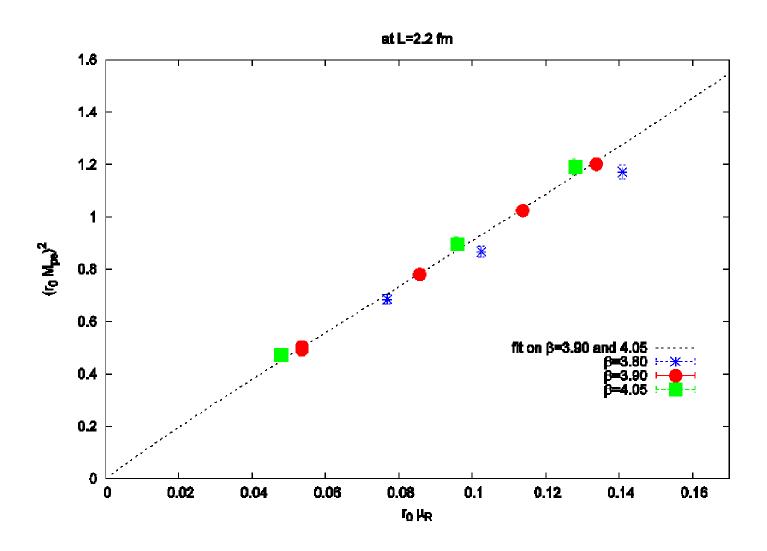
 $r_0 m_N$ vs. $r_0 \mu_R$



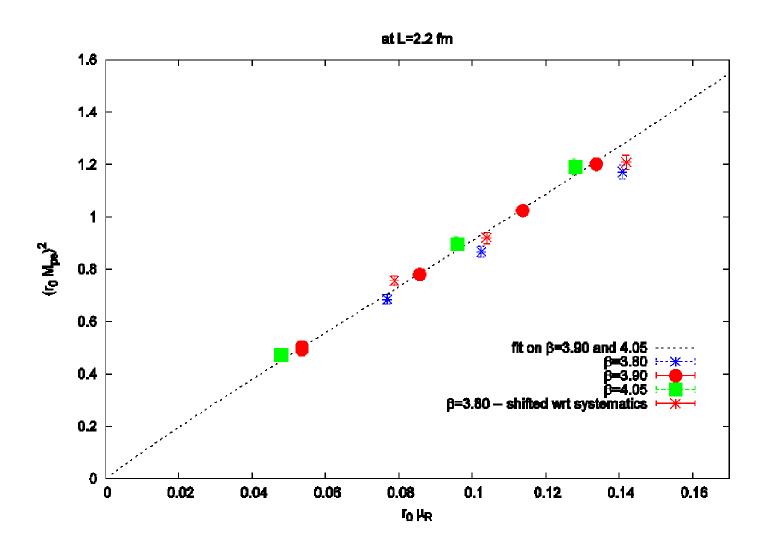
 $r_0 m_N \text{ vs. } r_0 \mu_R$



$r_0 m^2_{PS}$ vs. $r_0 \mu_R$

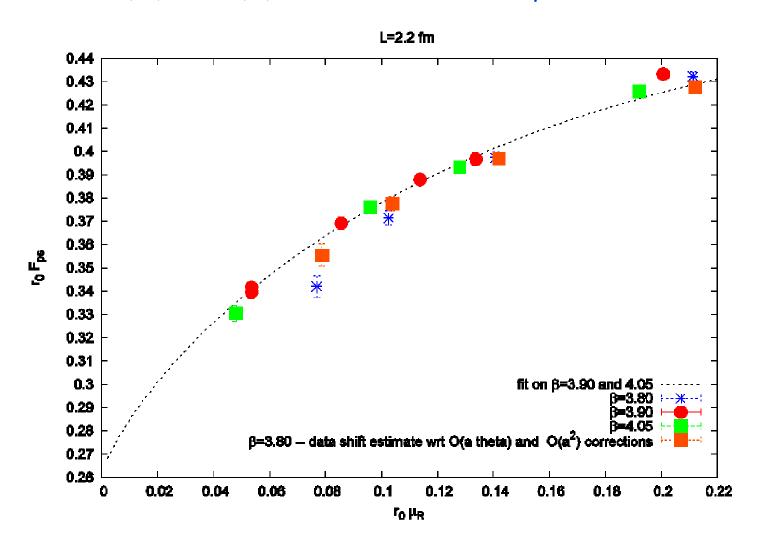


$r_0 m^2_{PS}$ vs. $r_0 \mu_R$

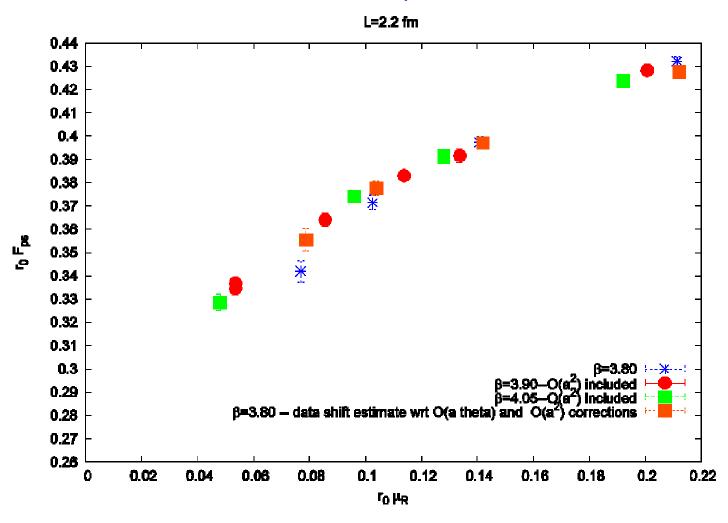


Let's include, besides $O(a\theta)$, also $O(a^2)$ corrections and implement the combined chiral fits' method ...

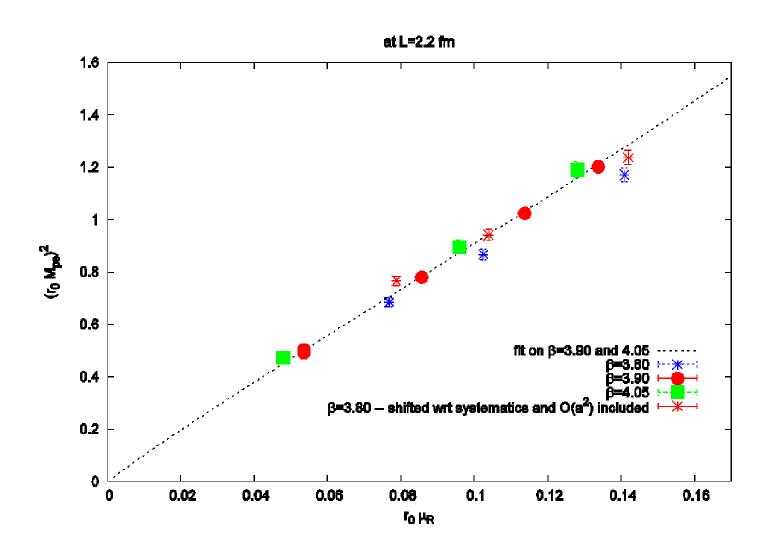
 $r_0 F_{ps} \ vs. \ r_0 \mu_R$ $O(a\theta)$ and $O(a^2)$ corrections included in $\beta{=}3.80$ data



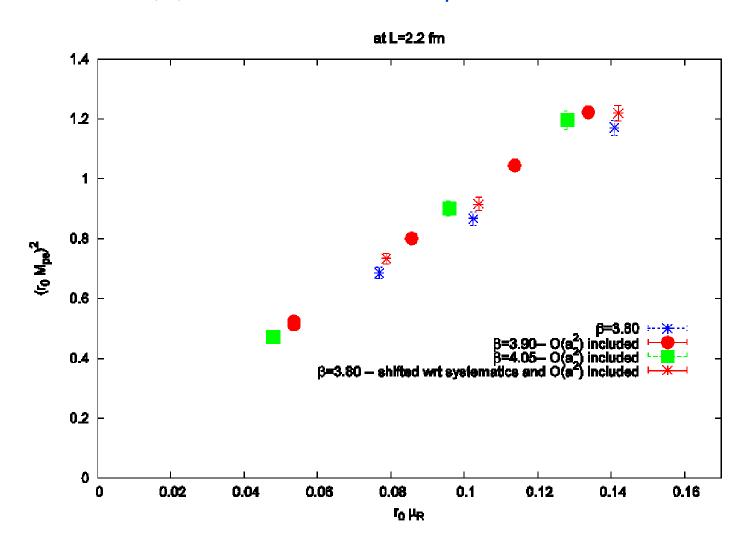
 $r_0F_{ps}~vs.~r_0\mu_R$ $O(a\theta)~and~O(a^2)~corrections~included~in~\beta=3.80~data$ $O(a^2)~corrections~included~in~\beta=3.90~and~4.05~data$



 $r_0 m^2_{PS} \ vs. \ r_0 \mu_R$ $O(a\theta)$ and $O(a^2)$ corrections included in $\beta{=}3.80$ data



 $r_0m^2_{PS}$ vs. $r_0\mu_R$ O(a θ) and O(a 2) corrections included in β =3.80 data O(a 2) corrections included in β =3.90 and 4.05 data



 $r_0 m^2_{PS} \ vs. \ r_0 \mu_R$ $O(a^2)$ corrections included in $\beta {=} 3.80$ data

