A method for gauge transforming quark propagators on the lattice ("regauging")

Vincent Morénas

Laboratoire de Physique Corpusculaire Université Blaise Pascal - IN2P3

Autrans ETMC Meeting - March 2009

Introduction

What we want

convert quark propagators calculated in one gauge into another gauge (for instance : the Landau gauge)

Ingredients

- link variables in both gauges
- propagator in the original gauge

Roadmap

- look for the gauge transformation function g(x) at each point of the lattice
- 4 do the propagator conversion

Outline

1 Determination of the gauge transformation function g(x)

Quark propagator conversion

A few benchmarks

Property of the gauge transformation function

where:

- in (out) represents the original (final) gauge
- U can be the link variable, or some curve in space-time going from x to y
- \Rightarrow if we know g(x) at some lattice point x_o , we can get g(x) for the whole lattice
- \Rightarrow First secondary problem : $g(x_o)$?

A new object

We need something gauge dependent whose transformation law involves one lattice point only...

For instance: a Wilson loop

$$W(x_o) = U_{\mu}(x_o) U_{\nu}(x_o + a\hat{\mu}) U_{\mu}^{\dagger}(x_o + a\hat{\mu} + a\hat{\nu}) U_{\nu}^{\dagger}(x_o + a\hat{\nu})$$

which statisfies

$$W^{\text{out}}(x_o) = g^{\dagger}(x_o) \cdot W^{\text{in}}(x_o) \cdot g(x_o)$$

Notes:

- no trace will be taken when using W(x)
- the choice of the 2D lattice slice for $W(x_o)$ is arbitrary
- matrices involved are SU(3) matrices

First secondary problem

- We choose a point x_o .
- 2 We calculate W^{in} and W^{out} at this lattice point.
- **3** We diagonalize the SU(3) matrices W^{in} and W^{out} :

$$W^{\text{in}} = M_{\text{in}}^{-1} \cdot D^{\text{in}} \cdot M_{\text{in}}$$

$$W^{\text{out}} = M_{\text{out}}^{-1} \cdot D^{\text{out}} \cdot M_{\text{out}}$$

where the D's are SU(3) diagonal matrices M's are SU(3) matrices

First secondary problem

• Using " $W^{\text{out}} = g^{\dagger}(x_o) \cdot W^{\text{in}} \cdot g(x_o)$ ", we obtain : $\begin{cases} D^{\text{out}} = \mathscr{P}^{-1} \cdot D^{\text{in}} \cdot \mathscr{P} \\ \text{where} & \mathscr{P} = M_{\text{in}} \cdot g(x_o) \cdot M_{\text{out}}^{-1} \end{cases}$

Consequence

If we can somehow determine \mathscr{P} , then we can get :

$$g(x_o) = M_{\text{in}}^{-1} \cdot \mathscr{P} \cdot M_{\text{out}}$$

 \Rightarrow Second secondary problem : \mathscr{P} ?

Second secondary problem

Important result:

because

$$D^{\text{out}} = \mathscr{P}^{-1} \cdot D^{\text{in}} \cdot \mathscr{P}$$

then for SU(3) matrices, if (for instance) D^{in} has three different non-vanishing diagonal terms, then :

- \rightarrow $D^{\text{out}} = D^{\text{in}}$
- $\rightsquigarrow \mathscr{P}$ is a SU(3) matrix with the following structure :

$$\mathscr{P}(\alpha, \beta) = \begin{pmatrix} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta} & 0 \\ 0 & 0 & e^{-i(\alpha+\beta)} \end{pmatrix}$$

(It is always possible to change the lattice slice or the lattice point if we get a D^{in} which does not fulfill this requirement...)

Second secondary problem

Quick summary

We now know : $M_{\rm in}$, $M_{\rm out}$ and the structure of $\mathscr{P}(\alpha,\,\beta)$ so that :

$$g(x_o) = M_{in}^{-1} \cdot \mathscr{P}(\alpha, \beta) \cdot M_{out}$$

 \Rightarrow we need to find α and β numerically

Second secondary problem : lpha and eta

Method:

• We use 2 different slices at x_0 and calculate :

$$\begin{cases} g^{(1)}(x_o, \alpha_1, \beta_1) = M_{\text{in}}^{(1)^{-1}} \cdot \mathscr{P}(\alpha_1, \beta_1) \cdot M_{\text{out}}^{(1)} \\ g^{(2)}(x_o, \alpha_2, \beta_2) = M_{\text{in}}^{(2)^{-1}} \cdot \mathscr{P}(\alpha_2, \beta_2) \cdot M_{\text{out}}^{(2)} \end{cases}$$

Of course :
$$g^{(1)}(x_o, \alpha_1, \beta_1) = g^{(2)}(x_o, \alpha_2, \beta_2)$$

• We define the real scalar quantity :

$$S(\alpha_1, \beta_1, \alpha_2, \beta_2) = \sum_{i,j} |g_{ij}^{(1)}(x_o, \alpha_1, \beta_1) - g_{ij}^{(2)}(x_o, \alpha_2, \beta_2)|^2$$

• We look for (α_1, β_1) (or (α_2, β_2)) that minimizes S

Finally

Gauge transformation function at x_o

 $g(x_o)$ can now be numerically calculated using :

$$g(x_o) = M_{\text{in}}^{-1}(x_o) \cdot \mathscr{P}(\alpha, \beta) \cdot M_{\text{out}}(x_o)$$

Gauge transformation function at x

We can reach all the lattice sites by applying repeatedly :

$$U^{\text{out}}(y, x) = g^{\dagger}(y) U^{\text{in}}(y, x) g(x)$$

Remark

This method gives the "true" gauge transformation function up to a global phase factor $\exp(in\varphi)$ with $\varphi = 2\pi/3$ (center of SU(3)):

$$\forall x, g_{\text{calc}}(x) = e^{i n \varphi} \cdot g_{\text{true}}(x)$$

We will see that this global factor is harmless for the propagator conversion.

Description

Method

We use the gauge transformation property of the propagators :

$$\mathsf{Prop}^{\mathsf{out}}(y, x) = g^{\dagger}(y) \cdot \mathsf{Prop}^{\mathsf{in}}(y, x) \cdot g(x)$$

Global phase factor

It is clear that the unknown global phase factor of g_{calc} cancels itself out in that relation....

Just to give an idea... as a conclusion

In Orsay (typical PC cluster):

24³ × 48 lattice
$$g(x)$$
 calculation \sim 30 min (could be improved) propagator conversion \sim 10 min

to be compared with the time to do a complete calculation of a propagator from scratch.

Tricky part: managing huge arrays