RCs of the bilinear operators: Results

P. Dimopoulos, R. Frezzotti, V. Lubicz G.C. Rossi, S. Simula, A. Vladikas

RCs from the RI-MOM method

• Scale Independent RCs $(Z_A, Z_V, Z_P/Z_S)$ from alternative methods

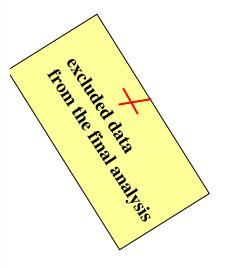
• $N_f = 2+1+1$: a plan for the calculation of the RCs

Statistics

		N_{meas}
μsea	0.960	
$\mu_{val}(RI\text{-}MOM)$	0.0060, 0.0080, 0.0110, 0.0165, 0.0208	240
μ_{val}	0.0060, 0.0086, 0.0110, 0.0165, 0.0200	231
μ _{sea}	0.0080, 0.0110, 0.0165	
$\mu_{val}(RI\text{-}MOM)$	0.0060, 0.0080, 0.0110, 0.0165, 0.0200	240
μ_{val} (alternative calc.) 9.0060, 0.0080, 0.0110, 0.0165, 0.0200	400

	$\beta = 3.90$		
		N_{meas}	
μ_{sea}	0.0040, 0.0064, 0.0085, 0.0100, 0.0450		
$\mu_{val}(RI\text{-}MOM)$	0.0040, 0.0064, 0.0085, 0.0100, 0.0150	240	
$\mu_{val}(alternative calc.)$	0.0040, 0.0064, 0.0085, 0.0100, 0.0150	240	

	$\beta = 4.05$	
	·	N_{meas}
μsea	0.0030	
$\mu_{val}(RI\text{-MOM})$	0.0030, 0.0060, 0.0080, 0.0120	240
μ_{val} (alternative calc.)	0.0030, 0.0060, 0.0080, 0.0120	152
μsea	0.0060, 0.0080	
$\mu_{val}(RI\text{-MOM})$	0.0030, 0.0060, 0.0080, 0.0120	160
μ_{val} (alternative calc.)	0.0030, 0.0060, 0.0080, 0.0120	130
μea	0.0120	
$\mu_{val}(alternative calc.)$	0.0030, 0.0060, 0.0080, 0.0120	130



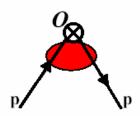
RI-MOM method

Define the Green function:

$$\mathbf{G}_{\Gamma}^{\mathrm{ud}}(\mathbf{p},\mathbf{p'}) = \mathbf{a}^{8} \sum_{\mathbf{x},\mathbf{y}} \left\langle \mathbf{u}(\mathbf{x})(\overline{\mathbf{u}}\Gamma\mathbf{d})_{0} \overline{\mathbf{d}}(\mathbf{y}) \right\rangle \mathbf{e}^{-i\mathbf{p}\cdot\mathbf{x}+i\mathbf{p'}\cdot\mathbf{y}} \quad \text{for} \quad \Gamma = \mathbf{S}, \mathbf{P}, \mathbf{V}, \mathbf{A}, \mathbf{T} \quad \leftrightarrow \quad \mathbf{I}, \gamma_{5}, \gamma_{\mu}, \gamma_{5}\gamma_{\mu}, \sigma_{\mu\nu}$$

Quark propagator:
$$S_q(p) = \sum_{x} \langle q(x)\overline{q}(0) \rangle e^{-ip \cdot x}, q = u,d$$

Evaluate:
$$\Gamma_{\Gamma}^{ud}(\mathbf{p},\mathbf{p'}) = \mathbf{Tr} [\mathbf{S}_{\mathbf{u}}(\mathbf{p})^{-1} \mathbf{G}_{\Gamma}^{ud}(\mathbf{p},\mathbf{p'}) \mathbf{S}_{\mathbf{d}}(\mathbf{p'})^{-1} \mathbf{P}_{\Gamma}]$$



at fixed (Landau) gauge

Martinelli, Pittori, Sachrajda, Testa, Vladikas, NPB 1995 Gimenez, Giusti, Rapuano, Talevi, NPB 1998

O(a) improvement

- Asymptotic O(a)-improvement at large p^2 and $\mu_q \rightarrow 0$ Becirevic, Gimenez, Lubicz, Martinelli, Papinutto, Reyes, JHEP 2004
- ♦ O(a)-improvement for any p² thanks to the symmetries of the action at maximal twist (see Roberto's talk at Trento Workshop 2008)
- ♦ Increase the statistics by taking the average:

$$\mathbf{Z}_{\Gamma} = (\mathbf{Z}_{\Gamma}^{\mathrm{ud}} + \mathbf{Z}_{\Gamma}^{\mathrm{du}})/2$$
 $\mathbf{Z}_{\mathrm{q}} = (\mathbf{Z}_{\mathrm{q}}^{\mathrm{u}} + \mathbf{Z}_{\mathrm{q}}^{\mathrm{d}})/2$

lacktriangle For the scale dependent RC: $Z(\mu) = C(\mu) \ Z^{RGI}$

where:
$$C(\mu) = e^{\frac{\alpha(\mu)}{\int d\alpha \gamma(\alpha)/\beta(\alpha)}}$$
 (N²LO for Z_T , N³LO for Z_S , Z_P)

The Goldstone pole:

♦ The pseudoscalar vertex couples to the PGB pole:

$$\Gamma_{\rm P} \approx A(p^2) + B(p^2) \frac{\langle \overline{\psi}\psi \rangle}{m_{\rm q}p^2} + \cdots$$
Cudell, Yaouanc, Pittori, PLB 1999

- For the pole subtraction use two methods:
 - (a) Fit the pole term and subtract;
 - (b) Calculate the "subtracted" vertex:

$$\Gamma_{P}^{SUB} = \frac{m_{1}\Gamma_{P}(m_{1}) - m_{2}\Gamma_{P}(m_{2})}{m_{1} - m_{2}} \approx \Gamma_{P}(m_{1}) + m_{1}\frac{\partial\Gamma_{P}}{\partial m_{1}} = A + \cdots$$
Giusti, Vladikas, PLB 2000

In our analysis both methods give compatible results.

Scalar vertex (twist): the PGB pole is suppressed by a factor $O(a^2)$

Subtract $O(a^2g^2)$ perturbative terms from RI-MOM vertices:

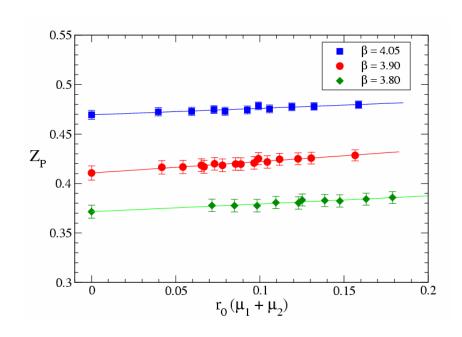
 $\mathcal{O}(a^2)$ corrections to the propagate and bilinears of clover fermions with Symansik improved gluons

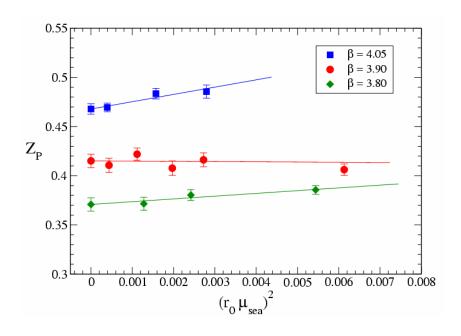
M. Constantinou , V. Giménerate Lubicz' , D. Palao , H. Panagopoulos , F. Stylianou

Numerical application of the $O(a^2g^2)$ subtractions using two choices for g^2 :

- (i) $g_0^2 = 6 / \beta$
- (ii) g^2 (boosted) = $g_0^2 / \langle U_{plag} \rangle$
- In the following we show results obtained with (ii).
- Moreover, it will be seen that the results for the RCs, before and after the subtractions, are compatible within the errors.

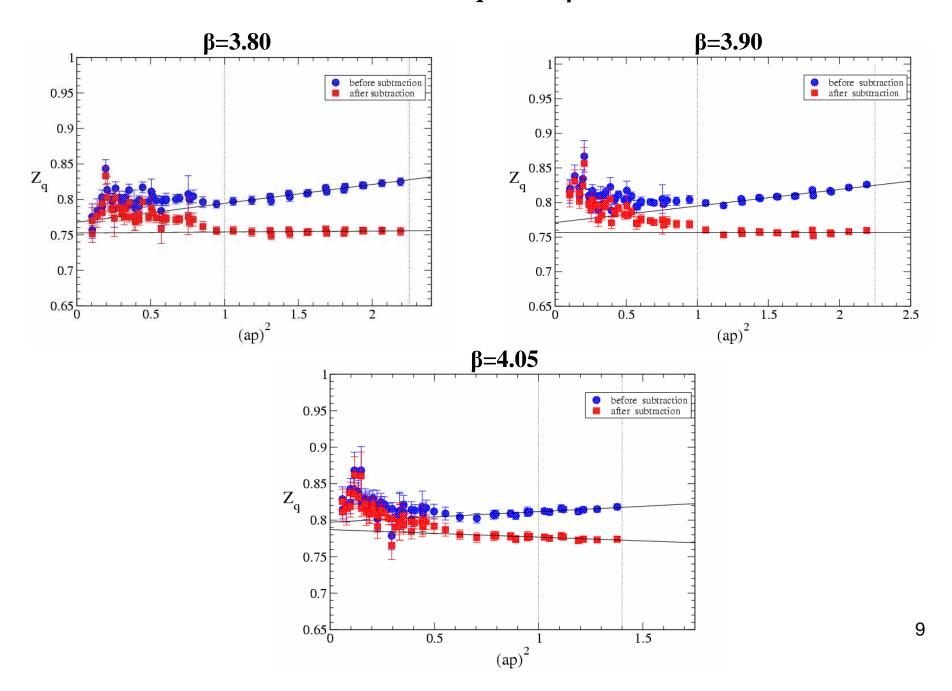
Z_P: valence & sea chiral limit

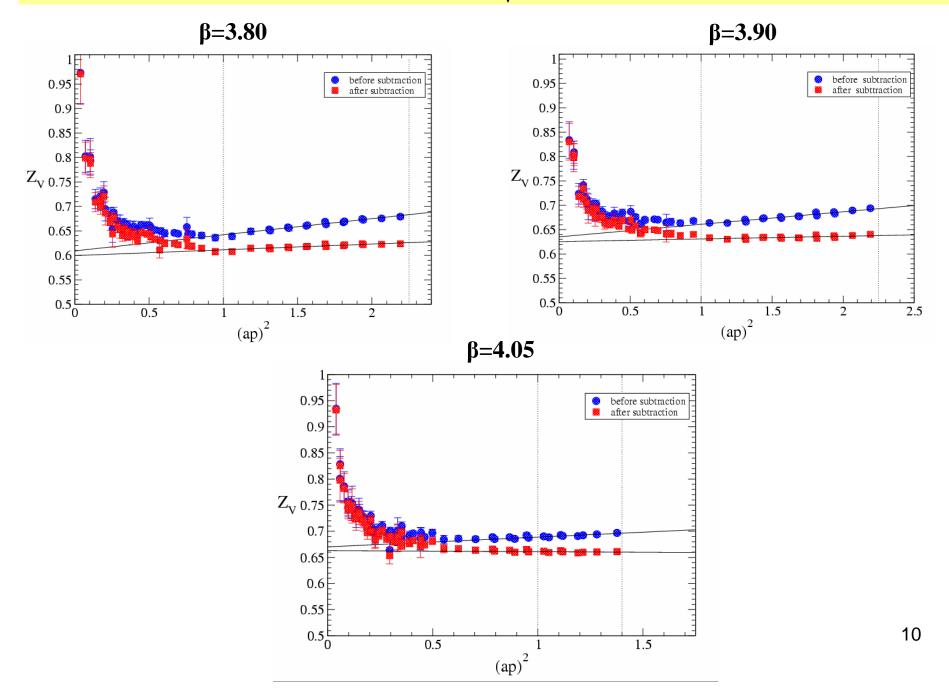


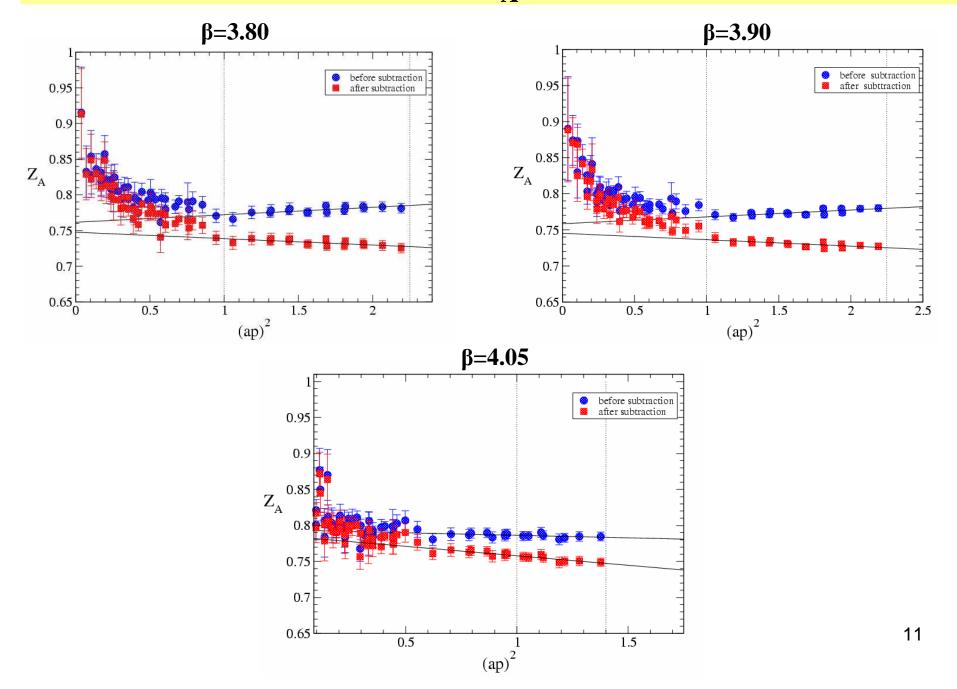


Valence chiral limit at $a\mu_{sea} = a\mu_{sea}^{min}$ for each β value

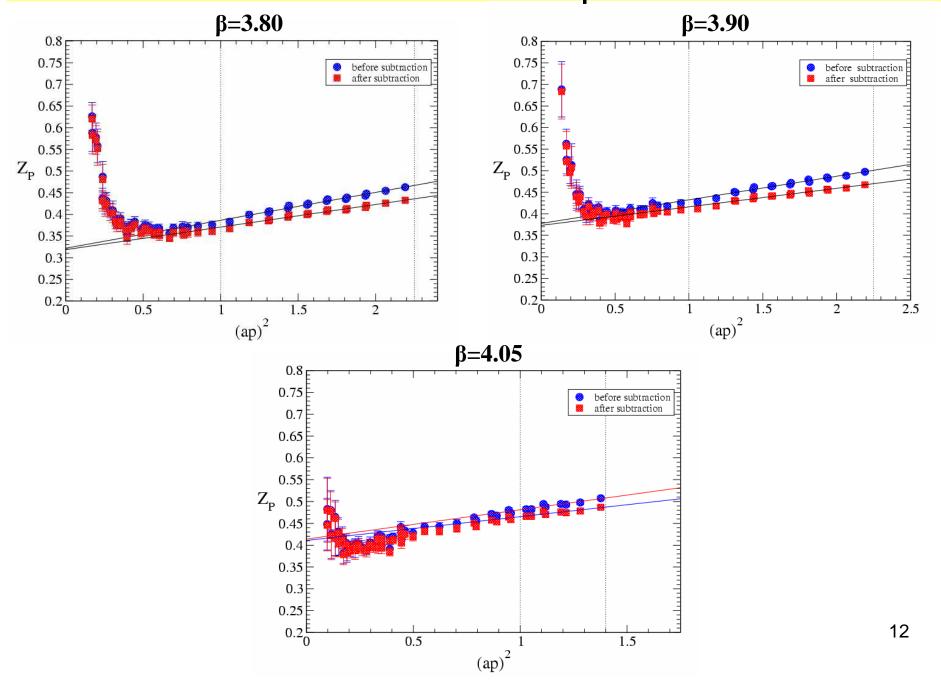
$Z_q (1/a)_{\beta}$



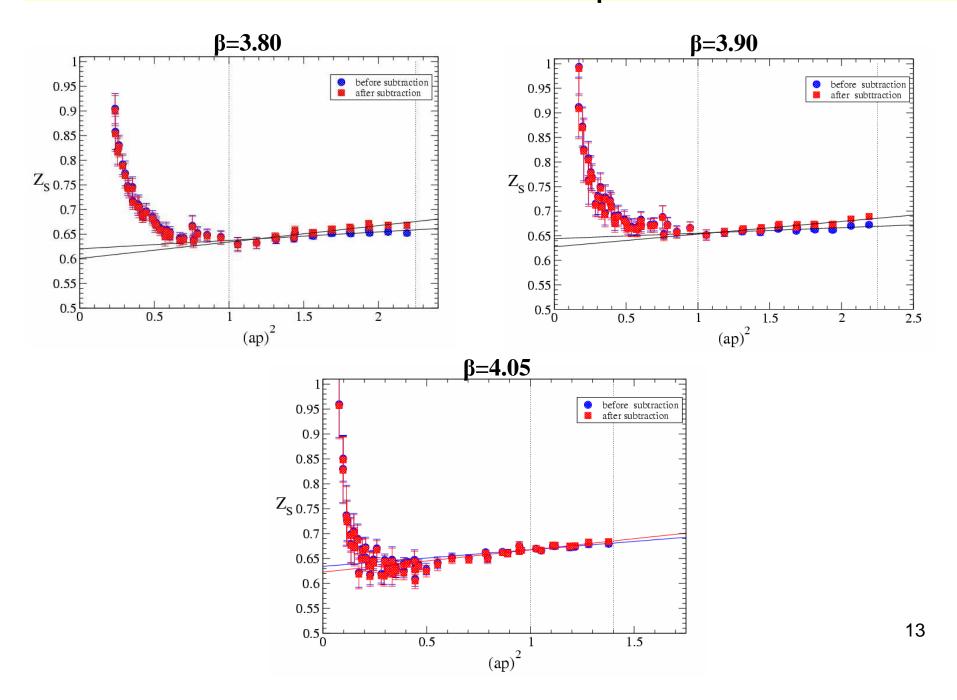




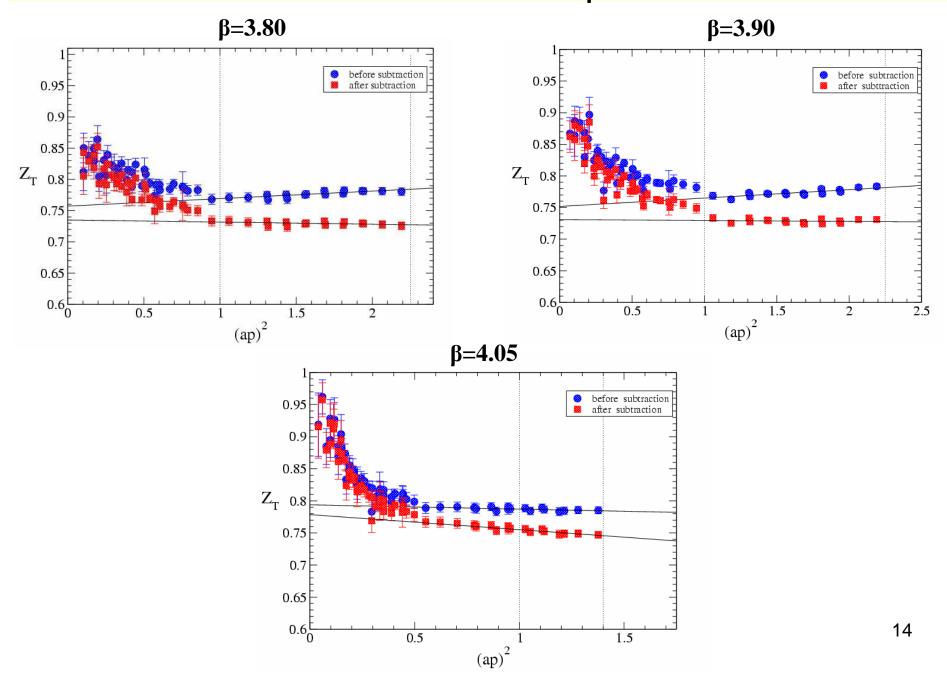
$Z_P(1/a)_{\beta}$



$Z_S(1/a)_{\beta}$

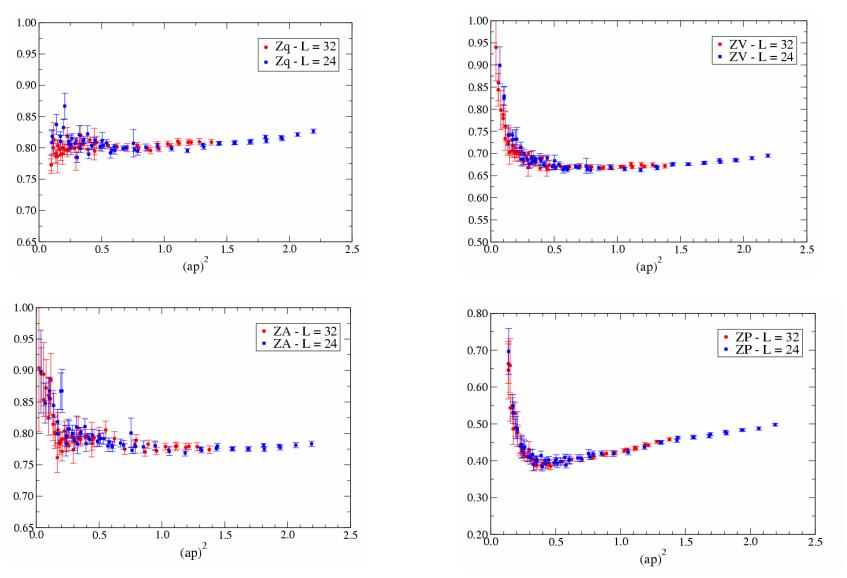


$Z_T (1/a)_{\beta}$



Check for finite volume effects

 $\beta = 3.90$ @ $a\mu_{sea} = 0.0040$



Scale Independent RCs: alternative methods

Consider the valence action in the physical basis :

$$S_{val} = a^4 \sum \bar{\psi}(x) (\gamma \tilde{\nabla} - i \gamma_5 \, r \, W_{cr} + \mu_q) \psi(x)$$

with:

$$W_{cr} = -\frac{a}{2} \sum_{\mu} \nabla_{\mu}^* \nabla_{\mu} + M_{cr}(r = 1)$$

$$\mu_q = \operatorname{diag}(\mu_u \ \mu_d) \qquad r = \operatorname{diag}(r_u \ r_d)$$

$$r_u = r_d = \pm 1$$
 \longrightarrow OS case

Make a chiral rotation back to the twisted basis:

<u>tm case</u> <u>OS case</u>

$$(u,d) = \exp[i(\gamma_5 \tau_3 \pi/4)](u',d')$$
 $(u,d) = \exp[i(\gamma_5 \pi/4)](u',d')$

Then for a renormalised bilinear operator we have:

$$Z_{O_{\tilde{\Gamma}}}\langle O_{\tilde{\Gamma}}\rangle^{tm} = Z_{O_{\tilde{\Gamma}}}\langle O_{\tilde{\Gamma}}\rangle^{OS} + O(a^2)$$

OS case $(A_R)_{\mu,ud} = Z_A A_{\mu,ud} = Z_A A_{\mu,ud}'$ $(A_R)_{\mu,ud} = Z_V A_{\mu,ud} = -i Z_V V_{\mu,ud}'$ $(V_R)_{\mu,ud} = Z_V V_{\mu,ud} = Z_V V_{\mu,ud}'$ $(V_R)_{\mu,ud} = Z_A V_{\mu,ud} = -i Z_A A_{\mu,ud}'$ $(V_R)_{\mu,ud} = Z_A V_{\mu,ud} = -i Z_A A_{\mu,ud}'$ $(P_R)_{ud} = Z_P P_{ud} = Z_P P_{ud}'$

$\mathbf{Z}_{\mathbf{P}} / \mathbf{Z}_{\mathbf{S}}$

Consider the matrix element, $g_{\pi} = <0|P|\pi>$ in the two regularisations

For the renormalised values we set the condition:

$$[g_{\pi^{\pm}}]^{cont} = Z_P [g'_{\pi^{\pm}}]^{tm} + O(a^2) = Z_S [g'_{\pi}]^{OS} + O(a^2)$$

from which, at the chiral limit, we obtain the value of $\mathbf{Z_P}$ / $\mathbf{Z_S}$

ZA

Consider the pseudoscalar decay constant in the two regularisations $f_{\pi^{\pm}}^{tm} = 2\mu_q g_\pi/m_\pi^2$ (no renormalisation constant is needed)

$$f_{\pi}^{OS} = \frac{\langle 0|A_0|\pi\rangle}{m_{\pi}}$$
 (Z_A is needed for the renormalisation)

We use the equality of renormalised quantities up to $O(a^2)$ terms:

$$[f_{\pi^{\pm}}]^{cont} = f_{\pi^{\pm}}^{tm} + O(a^2) = Z_A f_{\pi}^{OS} + O(a^2)$$

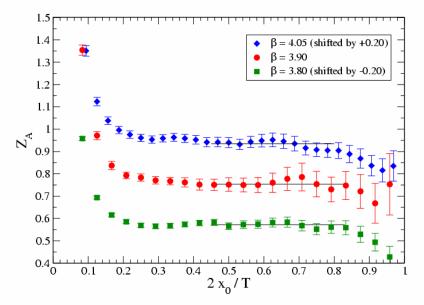
and in the chiral limit we obtain $\mathbf{Z}_{\mathbf{A}}$

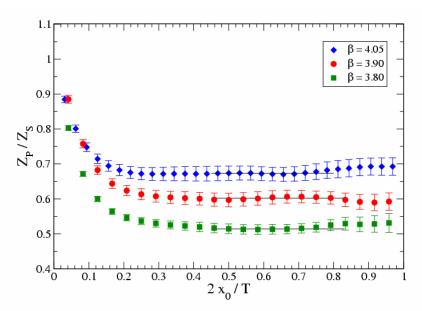
 $\mathbf{Z}_{\mathbf{V}}$

Use of <u>only</u> tm quarks and WI yields $\mathbf{Z_{V}}$:

$$Z_{V} = \frac{(\mu_{1} + \mu_{2})C_{PP}(x_{0})}{\tilde{\partial}C_{A_{0}P}(x_{0})}\Big|_{\chi-\text{limit}}$$
18

Quality of plateaux



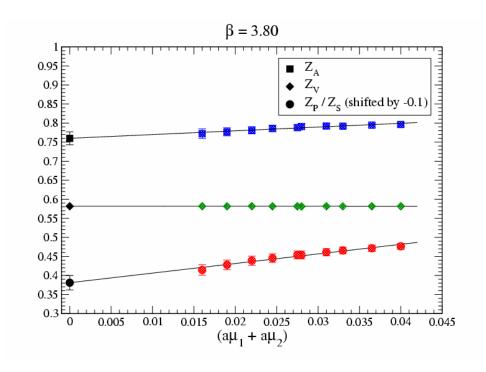


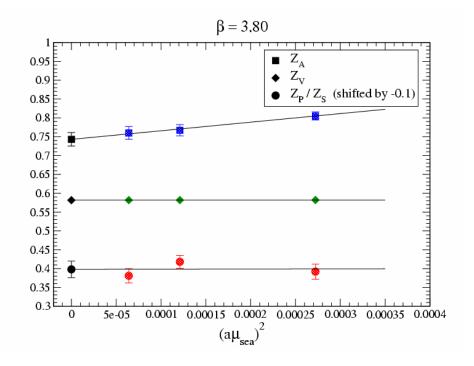
$$(a\mu_{\text{sea}}^{\text{min}}=a\mu_{\text{1}}=a\mu_{\text{2}})$$

at the minimum value of the sea quark mass for each value of β

Valence & Sea chiral limit

$$\beta = 3.80$$

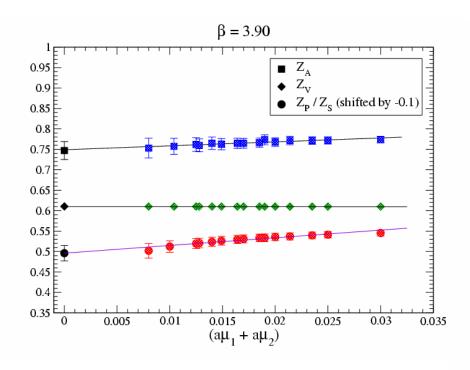


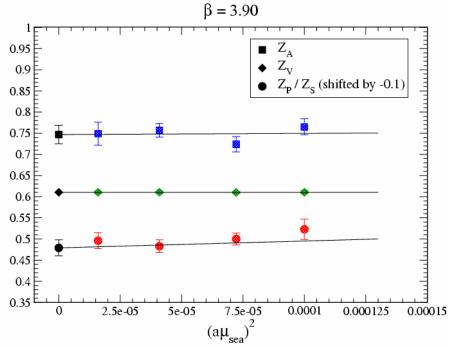


Valence chiral limit at $a\mu_{sea} = a\mu_{sea}^{min}$

Valence & Sea chiral limit

$$\beta = 3.90$$

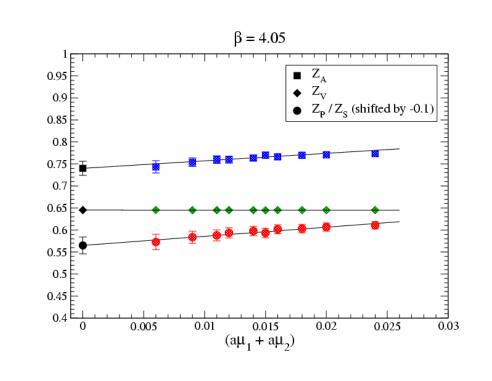


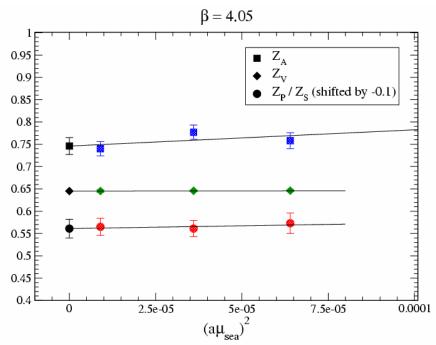


Valence chiral limit at $a\mu_{sea} = a\mu_{sea}^{min}$

Valence & Sea chiral limit

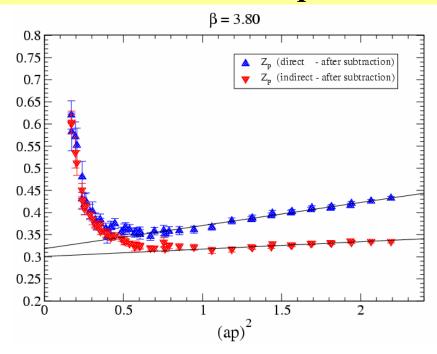
$$\beta = 4.05$$





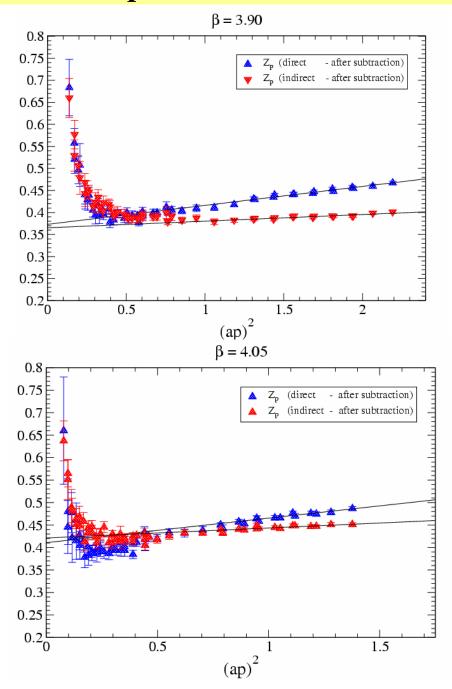
Valence chiral limit at $a\mu_{sea} = a\mu_{sea}^{min}$

Z_P -RI-MOM vs. Z_P -indirect



$$Z_{P}^{\text{indirect}}(1/a) = \left(\frac{Z_{P}}{Z_{S}}\right)_{\text{OS/tm}} Z_{S}^{\text{RI-MOM}}(1/a)$$

Compatible results within the errors?



RESULTS

	β	lin. fit in p ² w/o sub.	lin. fit in p^2 with sub.	"p²-window" with sub.	alternative method
	3.80	$0.609(8) [33(4) \times 10^{-3}]$	$0.600(8) [12(4) \times 10^{-3}]$	0.621(4)	0.5816(2)
Z_V	3.90	$0.635(7) [26(4) \times 10^{-3}]$	$0.625(7) [8(4) \times 10^{-3}]$	0.633(3)	0.6103(3)
	4.05	$0.670(9) [19(7) \times 10^{-3}]$	$0.663(9) [-2(7) \times 10^{-3}]$	0.663(3)	0.6451(3)
	3.80	0.762(11) [11(6) × 10 ⁻³]	0.748(11) [-9(6) × 10 ⁻³]	0.73.2(5)	0.747(22)
-	3.90				
Z_A		$0.759(11) [10(6) \times 10^{-3}]$	$0.745(11) \left[-9(6) \times 10^{-3}\right]$	0.734(4)	0.743(18)
	4.05	$0.793(11) [-7(8) \times 10^{-3}]$	0.784(11) [-26(8) × 10 ⁻³]	0.782(8)	0.748(18)
		a unadistrative and the			
	3.80	$0.538(17) [75(8) \times 10^{-3}]$	$0.555(17)$ [41 (8) \times 10 ⁻³]		0.498(22)
$Z_{\mathcal{P}}/Z_{\mathcal{S}}$	3.90	$0.592(18)$ [70(8) \times 10 ⁻³]	$0.603(18) [37(8) \times 10^{-3}]$		0.579(19)
	4.05	$0.648(20)$ [70(16) × 10^{-3}]	$0.654(20) [41(16) \times 10^{-3}]$		0.661(21)
	3.80	0.620(15) [17(7) × 10 ⁻³]	0.601(16) [33(8) × 10 ⁻³]	0.661(6)	
$Z_{S}(1/a)$	3.90	0.644(11) [12(6) × 10 ⁻³]	0.627(12) [26(6) × 10 ⁻³]	0.663(5)	
2())	4.05	$0.634(14) [33(12) \times 10^{-3}]$	0.823(15) [45(13) × 10 ⁻³]	0.882(5)	
		. , , , ,	` / ` / _ /	` '	
	3.80	0.322(10) [84(4) × 10 ⁻³]	0.318(10) [52(4) × 10 ⁻³]		0.300(14)
7 (1 ()					/
$Z_P(1/a)$	3.90	0.378(08) [55(4) × 10 ⁻³]	$0.373(08) [43(4) \times 10^{-3}]$		0.363(13)
	4.05	0.414(11) [87(7) × 10 ⁻³]	0.411(11) [55(7) × 10 ⁻³]		0.412(13)
	3.80	0.757(10) [12(5) × 10 ⁻³]	$0.735(10) [-3(5) \times 10^{-3}]$	0.730(5)	
$Z_T(1/a)$	3.90	$0.752(09) [13(5) \times 10^{-3}]$	$0.731(09) \left[-2(5) \times 10^{-3}\right]$	0.730(3)	$\mathbf{Z}_{\mathbf{p}}$ Inc
	4.05	$0.794(13) [-7(9) \times 10^{-3}]$	$0.779(12) [-23(9) \times 10^{-3}]$	0.759(6)	-Р
	3.80	$0.768(07) [27(4) \times 10^{-3}]$	$0.753(07) [1(4) \times 10^{-3}]$	0.755(4)	
		(1 - · (·) - · · · · · · · · · · · · · · · · ·	0.585/05) [0/4] 40-31	0.7557(0)	
$Z_q(1/a)$	3.90	$0.771(07) [24(4) \times 10^{-3}]$	$0.757(07) [0(4) \times 10^{-3}]$	0.757(3)	

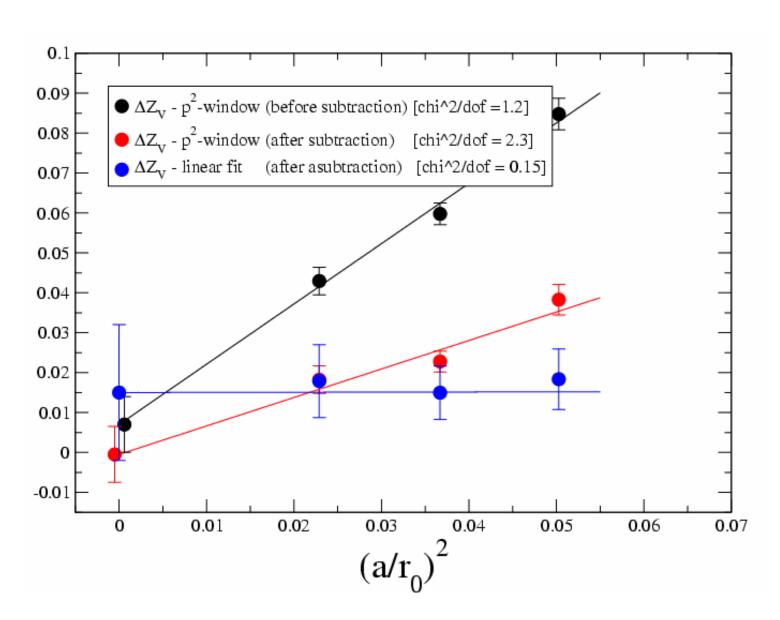
We provide the final results from the RI-MOM calculation using a linear fit in (a^2p^2) *after subtracting* the estimated $O(a^2g^2)$ contributions. The reasons for this choice (instead of the "p²-window" method) are:

- (a) the small difference in the values of Z_V between RI-MOM and the WI method.
- (b) the fact that, with this choice, the final results are practically the same either using the g^2 (boosted) or the g_0^2 values in the calculation of the $O(a^2g^2)$ terms.

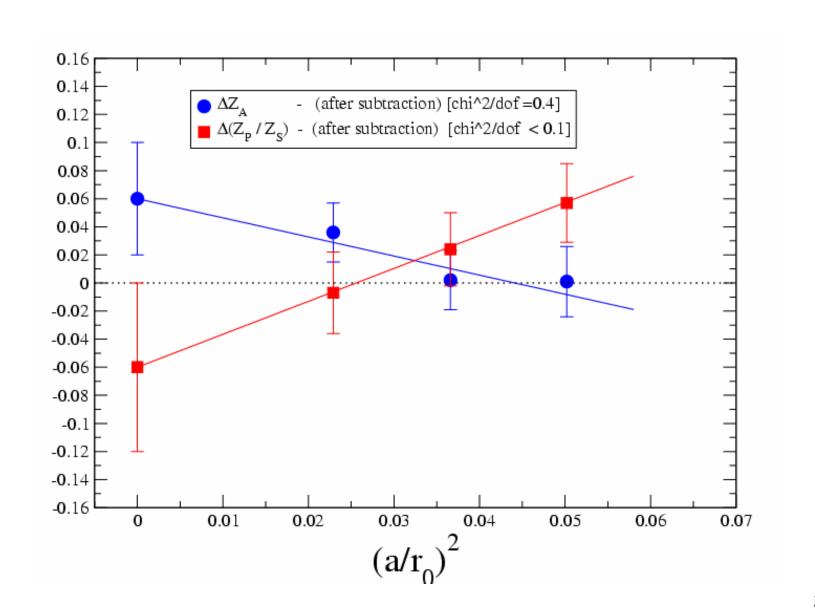
FINAL RI-MOM RESULTS

	β	lin. fit in p ² w/o sub.	lin. fit in p ² with sub.	"p²-window" with sub.	alternative method
	3.80	0.609(8) [33(4) × 10 ⁻³]	0.600(8) [12(4) × 10 ⁻³]	0.621(4)	0.5816(2)
Z_V	3.90	0.635(7) [28(4) × 10 ⁻³]	0.625(7) [8(4) × 10 ⁻³]	0.633(3)	0.6103(3)
	4.05	0.670(9) [19(7) × 10 ⁻³]	0.663(9) [-2(7) × 10 ⁻³]	0.663(3)	0.6451(3)
	4.00	0.010(5) [15(1) × 10]	0.000(5) [-2(1) x 10]	0.000(0)	0.0401(0)
	3.80	0.782(11) [11(6) × 10 ⁻³]	0.748(11) [-9(6) × 10 ⁻³]	0.732(5)	0.747(22)
Z_A	3.90	0.759(11) [10(6) × 10 ⁻³]	$0.745(11) [-9(6) \times 10^{-3}]$	0.734(4)	0.743(18)
~	4.05	$0.793(11) [-7(8) \times 10^{-3}]$	$0.784(11) [-28(8) \times 10^{-3}]$	0.782(8)	0.748(18)
				` '	
	3.80	0.538(17) [75(8) × 10 ⁻³]	0.555(17) [41(8) × 10 ⁻³]		0.498(22)
Z_P/Z_S	3.90	$0.592(18) [70(8) \times 10^{-3}]$	0.603(18) [37(8) × 10 ⁻³]		0.579(19)
	4.05	$0.648(20)$ [70(16) \times 10 ⁻³]	0.654(20) [41(16) × 10 ⁻³]		0.661(21)
	3.80	$0.620(15) [17(7) \times 10^{-3}]$	0.601(16) [33(8) × 10 ⁻³]	0.661(6)	
$Z_{S}(1/a)$	3.90	$0.644(11) [12(6) \times 10^{-3}]$	$0.627(12) [28(8) \times 10^{-3}]$	0.663(5)	
	4.05	0.634(14) [33(12) × 10 ⁻³]	0.623(15) [45(13) × 10 ⁻³]	0.882(5)	
			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	3.80	0.322(10) [84(4) × 10 ⁻³]	0.318(10) [52(4) × 10 ⁻³]		0.300(14)
$Z_P(1/a)$	3.90 4.05	0.378(08) [55(4) × 10 ⁻³]	0.373(08) [43(4) × 10 ⁻³]		0.363(13)
	4.05	0.414(11) [87(7) × 10 ⁻³]	0.411(11) [55(7) × 10 ⁻³]		0.412(13)
	3.80	0.757(10) [12(5) × 10 ⁻³]	0.735(10) [-3(5) × 10 ⁻³]	0.730(5)	
$Z_T(1/a)$	3.90	$0.752(09) [13(5) \times 10^{-3}]$	$0.731(09) [-2(5) \times 10^{-3}]$	0.730(3)	
2T(I/d)	4.05	$0.794(13) [-7(9) \times 10^{-3}]$	$0.779(12) [-23(9) \times 10^{-3}]$	0.759(8)	
	4.00	5.194(15) [-1(9) x 10]	5.119(12) [-25(9) × 10]	0.109(0)	
	3.80	0.768(07) [27(4) × 10 ⁻³]	0.753(07) [1(4) × 10 ⁻³]	0.755(4)	
$Z_q(1/a)$	3.90	$0.771(07) [24(4) \times 10^{-3}]$	0.757(07) [0(4) × 10 ⁻³]	0.757(3)	
2g(1/u)	4.05	$0.797(12) [15(9) \times 10^{-3}]$	0.787(12) [-10(9) × 10 ⁻³]	0.777(5)	
		5(22) [20(3) × 20]	(12) [12(3) × 120]	· · · · · (e)	

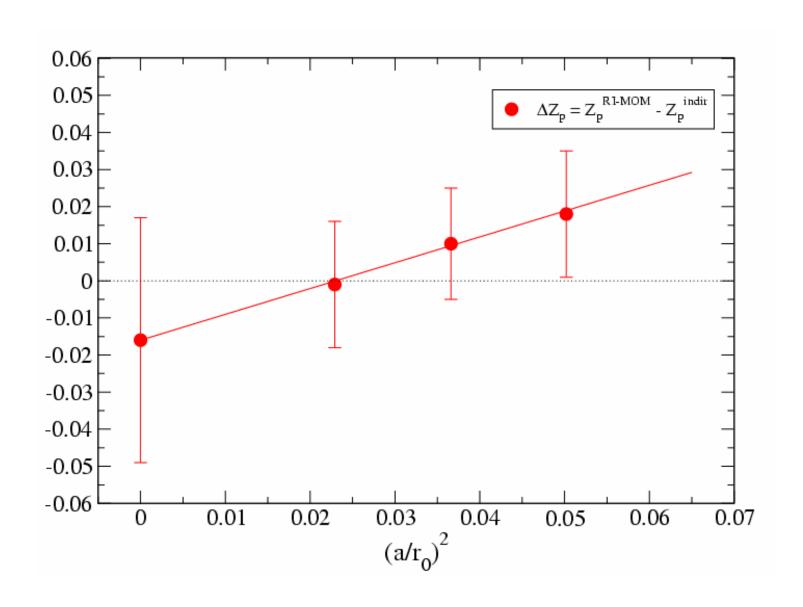
$\Delta Z_{V} = Z_{V}^{RI-MOM} - Z_{V}^{WI}$



ΔZ_A & $\Delta (Z_P/Z_S)$



$\Delta Z_P = Z_P^{RI-MOM} - Z_P^{Indirect}$



$N_f = 2+1+1$: RCs for the bilinear operators

- New (special) production runs with $N_f=4$.
- Relax the accuracy of $am_{pcac} \sim 0.005-0.010$; from the $N_f=0$ experience we have

$$dZ/d(am)_{pcac} < 1$$
 (Becirevic, Gimenez, Lubicz, Martinelli, Papinutto, Reyes, JHEP 2004)

Hence we have good reasons to expect the same in the unquenched case. Therefore, the final error of the Z's, which is of order of 1%, will not be substantially affected.

• Plans for the near future are for the calculation of the RCs at:

$$\beta = 1.90$$

(the choice of the temporal extension reflects the need to be sure about the pion state isolation and therefore get a safer estimate for am_{pcac})

$$\mathbf{a}\mathbf{\mu}_{sea} = 0.0060, 0.0080, 0.0100, [or 0.0120]$$

$$\mathbf{a}\boldsymbol{\mu}_{\mathbf{val}} = 0.0060, 0.0080, 0.0100, 0.0120, 0.0140, 0.0160 \dots$$

Next run at..

Thermalisation is already under way. This $a\mu_{sea}$ value will serve for a useful comparison, since for it we already have (massive-scheme) estimates of the RCs calculated in the N_f =2+1+1 theory.