Autrans Meeting

Problem: neutral pion mass for $N_f = 2 + 1 + 1$

- neutral pion mass is very light
 - unexpected large mass splitting
 - long autocorelations (though no signs of metastability)
 - effects on physical observables?

Rigorous stragetgy

• we stop!!!

conservative strategy

- ullet accept mass splitting with size as in $N_f=2$
 - throw away some data
 - killer question: how light can we go at $\beta=2.1$?

adventurous strategy

- just live with the light neutral pion
 - check other observables
 - finite size effects (Colangelo, Wu)
 - lattice spacing effects

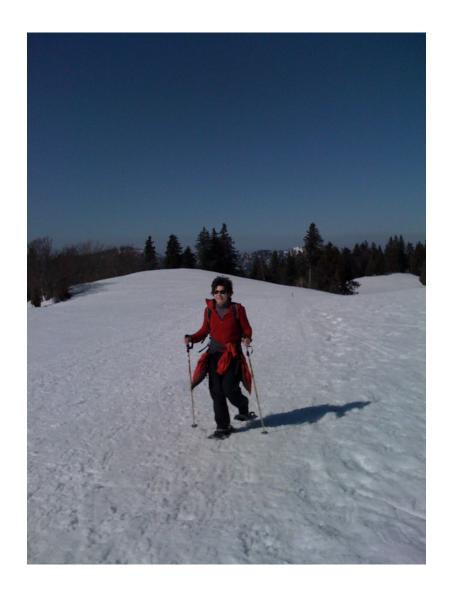
understand neutral pion mass

- chiral perturbation theory
- ullet add $c_{
 m sw}$ long project
 - needs imlementation in HMC code
 - needs tuning of parameters
- other actions/ideas that can be tried out?

Super B Physics

- build ETMC subgroup with people interested
- develop a strategy: step scaling, heavy/static-light
- first task: determine needed resources $(48^3 \cdot 96)$

Problem: Kaon too heavy


- start a new set of simulations?
- try reweighing in μ_{σ} , μ_{δ}

Problem: analysis of heavy quark sector for $N_f=2+1+1$

- unitary setup problems with mixings
- mixed setup check lattice artfecats

Priorities

- finish simulation $\beta = 2.1 \ N_f = 2 + 1 + 1$
- compute disconnected diagrams
- analytical understanding of neutral pion effects
 a la FR and chiral perturbation theory
- ⇒ ground for decisions
- ullet analyze Kaon sector at $eta=4.2\ N_f=2$
- test feasibility of simulations with $N_f=4$
- one large volume calculation

