Lattice and (Super)B Physics

Giancarlo Rossi

University of Rome "Tor Vergata"

ETM Collaboration Meeting

Autrans, March 18-20, 2009

- Prologue
 - Super-B factory

- Prologue
 - Super-B factory
- Plan of action
 - a call for lattice study groups and collaborations

- Prologue
 - Super-B factory
- Plan of action
 - a call for lattice study groups and collaborations
- Where can the lattice be of help
 - (light and) heavy flavour physics

Prologue

Super-B factory

Plan of action

• a call for lattice study groups and collaborations

■ Where can the lattice be of help

(light and) heavy flavour physics

How can we control systematics

- various Wilson fermion/glue options
- lattice spacing
- pion mass

- Prologue
 - Super-B factory
- Plan of action
 - a call for lattice study groups and collaborations
- Where can the lattice be of help
 - (light and) heavy flavour physics
- How can we control systematics
 - various Wilson fermion/glue options
 - lattice spacing
 - pion mass
- Conclusions

Prologue

- Super-B factory
- ▲ The idea of constructing a Super-B factory in the area between Tor Vergata Campus and Frascati INFN Lab's has been accepted by Italian Authorities
- ▲ A number of scientific Institutions and individual countries around the world have expressed their interest in this enterprise, among which France, Spain, Russia and USA
- ▲ RECFA working group at CERN has been put up to study the physics potential and technical feasibility of the proposed high luminosity Super-B facility
- ▲ Some first amount of money has been allocated to the project for R&D and dedicated computing facilities by local (regional) Authorities

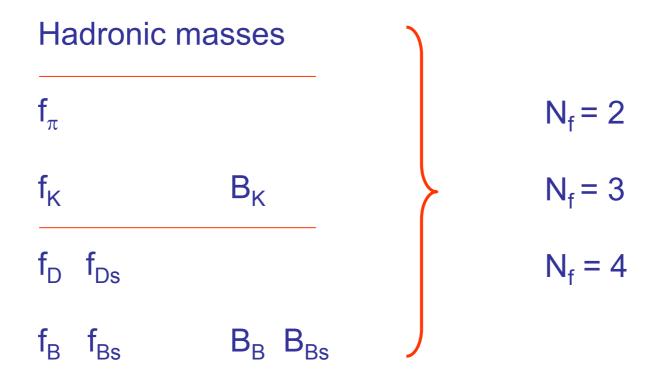
Plan of action

a call for lattice study groups and collaborations

Establishing a strategy

put up lattice study groups promote collaborations

identify research projects for BSM physics determine CPU requirements

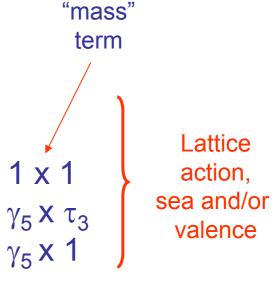

Specifically

identify hadronic matrix elements of interest streamline data analysis

control systematics to the necessary level of accuracy devise feasibility studies and simulation projects

■ Where can the lattice be of help

• e.g. (light and) heavy flavour physics



How can we control systematics

RF & GCR

- various Wilson fermion/glue options
- lattice spacing
- pion mass
- Choice of glue action & c_{sw}
- Wilson fermions

W - pair
$$r_1 = r_2$$
 $\omega = 0$
tw - pair $r_1 = -r_2$ $\omega = \pi/2$
OS - pair $r_1 = r_2$ $\omega = \pi/2$

- "Three" sufficiently fine lattice spacings
- to accommodate 200-250 MeV pions

Lattice parameters

NOTES

- 1) Determinant for Wilson and tw is P-even and isospin blind
- 2) Simulation stability worsens as $\mu_a \rightarrow 0$ and/or N_f increases

Comparing W, tw, OS-val fermions

O(a) improvement

W need improv. coeff'stw for free

OS for free

Isospin symmetry

W OK important for Meson $\rightarrow \pi\pi$ and FSI's

Chiral sym. & mixing

W KO
tw ~OK but...

Unitarity

$$\hat{m}_{ud} = Z_P^{-1} \mu_l, \quad \hat{m}_{\pm} = Z_P^{-1} (\mu_h \pm Z_P / Z_S \varepsilon_h)$$

W OK (on their own sea)

tw OK (on their own sea)

OS KO (mass matching \rightarrow O(a²))

Large quark mass

a blend of the above +

FSS a la ToV →

renormalizability and O(a) improv.

• The structure of "mass" terms

• The currents

Conserved currents

• Fixing M_{cr} and c_{SW}

$$\begin{array}{c} \text{Wilson} & \mu_{q} = 0, \quad a << x_{0} << T, \quad \hat{\mu}_{q} = Z_{A}Z_{P}^{-1}m_{PCAC}^{W} = Z_{m}(M_{0} - M_{cr}^{W}) \\ \\ \frac{\partial m_{PCAC}^{W}(x_{0}, M_{0})}{\partial x_{0}} = 0 \quad \Rightarrow \quad c_{SW}(g^{2}) + [O(a)]^{W} \\ \\ <\partial_{\mu}A_{\mu}^{b}(x_{0})P^{b}(0)> \\ \hline \\ \\ \hline \text{tw} \qquad \qquad \mu_{q} \neq 0, \quad a << x_{0} << T, \qquad \qquad \hat{\mu}_{q} = Z_{P}^{-1}\mu_{q} \\ \\ \frac{\partial m_{PCAC}^{tw}(x_{0}, M_{0})}{\partial x_{0}} = 0 \quad \Rightarrow \quad c_{SW}(g^{2}) + [O(a)]^{tw} \\ \\ <\partial_{\mu}V_{\mu}^{b}(x_{0})P^{b}(0)> \\ \hline \\ \hline =2m_{PCAC}^{tw}(x_{0}, M_{0}) = 0 \quad \Rightarrow \quad M_{cr}^{opt} = M_{cr}^{m'al}(g^{2}) + [O(a^{3})]^{tw} \\ \\ <\partial_{\mu}V_{\mu}^{b}(x_{0})P^{b}(0)> \\ \hline \\ \hline \end{array}$$

Note - $M_{cr}^{m'al}$ and c_{SW} take the same values for Wilson and tw

• Fixing M_{cr} at $c_{SW}=0$ in tw

$$\frac{\langle \partial_{\mu} V_{\mu}^{2}(x_{0}) P^{1}(0) \rangle}{\langle P^{1}(x_{0}) P^{1}(0) \rangle} = 2m_{PCAC}^{tw}(M_{0}) = 0 \quad \rightarrow \quad M_{cr}^{opt} = M_{cr}^{m'al}(g^{2}) + [O(a)]^{tw}$$

$$<\Omega/L_5^{tw}/\pi^3> = <\Omega/b_5^{tw}\overline{\psi}i\gamma_5\tau^3\sigma\cdot F\psi + \delta_1^{tw}\Lambda^2\overline{\psi}i\gamma_5\tau^3\psi/\pi^3> = 0 + O(\mu_q)$$

- What can we do for OS-val fermions?
 - \bullet $C_{SW}=0$

$$/<\partial_{\mu}A_{\mu}^{1}(x_{0})P^{1}(0)>-2\mu_{q}< P^{1}(x_{0})P^{1}(0)>/ \qquad \text{minimize} \\ /m_{\pi\,OS}^{2}f_{\pi}G_{\pi\,OS}-2\mu_{q}G_{\pi\,OS}^{2}/=O(a^{2}) \qquad G_{\pi\,OS}=<\Omega/P^{1}/\pi^{1}>$$

• $c_{sw} \neq 0$, i.e. at its appropriate (non-perturbative) value

$$L_5^{OS} = b_5^{OS} \overline{\psi} i \gamma_5 \sigma \cdot F \psi + \delta_1^{OS} \Lambda^2 \overline{\psi} i \gamma_5 \psi + O(\mu_q) = 0$$

• Computing f_M , m_M , $<\overline{M}|O_{VV+AA}|M>$ (M = π ,D,B)

$$f_{M} = <\Omega |A_0|M>$$

 $\begin{array}{c} \text{Isospin OK, need} \\ \text{W} & \begin{array}{c} \textbf{Z}_{A}, \ \textbf{c}_{A} \ (\text{and b}_{A} \ \text{for large} \ \mu_{q}) \\ \textbf{O(a^2) corr's not too small} \end{array}$

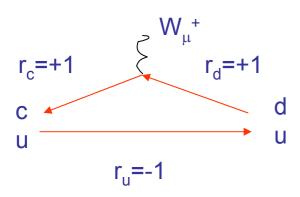
tw $\begin{cases} \text{Isospin KO}, \text{ no need} \\ \text{for } Z_A, c_A \text{ and } b_A \\ f_{\pi 3} \text{ and } f_{\pi \pm} \text{ are fine} \end{cases}$

OS Isospin OK, need $Z_A \ne 1$, not c_A and b_A f_{π} seem to be fine

 \mathbf{m}_{π}

W $\begin{cases} m_{\pi}^{2} \equiv 2Bm_{PCAC} = 2B(M_{0} - M_{cr}^{W}) = \\ = 2B(M_{0} - M_{cr}^{opt} + O(a^{2})), c_{SW} \neq 0 \end{cases}$

tw $\begin{cases} m_{\pi^{\pm}}^2 = 2B\mu_q + O(a^2\mu_q, a^4)/_{M_{cr}^{opt}} \\ m_{\pi^3}^2 = 2B\mu_q - O(a^2)/_{M_{cr}^{opt}} \end{cases}$


$$\begin{aligned} & \left\{ \begin{aligned} m_{\pi}^2 = 2B\mu_q + O(\,a^2\,) \right|_{M_{cr}} \\ & N_f = 0 \ c_{\text{SW}} = 0 \ \rightarrow \text{large } \chi \text{LF, Regina} \\ & N_f = 0 \ c_{\text{SW}} \neq 0 \ \rightarrow \text{small } \alpha\text{-coll} \\ & N_f = 2 \ c_{\text{SW}} = 0 \ \rightarrow \text{large ETMC} \\ & N_f = 2 \ c_{\text{SW}} \neq 0 \ \rightarrow \text{to be tried} \end{aligned} \end{aligned}$$

Use, e.g. CLS N_f=2 sea on OS-val quark pairs

$\bullet < M | O_{VV+AA} | M >$

$$\langle \overline{M}_{12} \mid O_{VV+AA}^{FR} \mid M_{34} \rangle$$

$$\binom{r_1 = -r_2}{tw} \left(-r_1 = r_2 = r_3 = r_4 \right) \binom{r_1 = r_2}{OS}$$
 • No mixing • O(a) improvement • O(a²) unitarity violations • $m_{M_{12}} - m_{\overline{M}_{34}}$ small (?) @ $c_{SW} \neq 0$ • $m_{M_{12}} - m_{\overline{M}_{34}}$ large, B_K fine @ $c_{SW} = 0$

• Form factor, e.g. $\langle D|V_{\mu}|\pi\rangle$

- In order to have a "unitary" pion we better take it twisted $r_d = -r_u$, so that $m_{\pi^{\pm}}^2 /_{M^{opt}} = 2B\mu_q + O(a^2\mu_q, a^4)$
- We take $r_d = r_c = 1$. The current is OS. We either employ the 1-ps current ($Z_V=1$), or the well-known Z_{V} value.
- With the above r-choices also D is OK

Understanding O(a²) effects in PS meson masses

In the Symanzik language L₆ and L₅L₅ matter

• L_6 - In the massless theory \rightarrow 8 (sets of) operators potentially responsible for $O(a^2)$ pion mass (splitting)

$$\underline{S^{0}S^{0}, P^{b}P^{b}, b = 1,2,3} - \underline{P^{0}P^{0}, S^{b}S^{b}, b = 1,2,3}$$

$$\underline{V_{\mu}^{b}V_{\mu}^{b}, A_{\mu}^{b}A_{\mu}^{b}, b = 1,2,3} - \underline{T_{\mu\nu}^{0}T_{\mu\nu}^{0}, T_{\mu\nu}^{b}T_{\mu\nu}^{b}, b = 1,2,3}$$

Note

- 1) Operators gets reshuffled moving
 - from W to tw (by a $i\gamma_5\tau^3$ rotation)
 - from W to OS (by a $i\gamma_5$ rotation) but coefficients in front stay the same
- 2) Because of χ -symmetry breaking, coefficients in front of operators belonging to the same χ -multiplet are not (necessarily) equal

Question

What are the operators that give the largest contribution to $\langle \pi | L_6 | \pi \rangle$?

An "order of magnitude" estimate can be obtained by a combined use of

- Perturbation Theory PT
- Soft Pion Theorems SPT's
- Vacuum State Aproximation VSA
- To leading order in PT (i.e. α_s^2) only

$$S^0S^0$$
, $T^0_{\mu\nu}T^0_{\mu\nu}$, $V^0_{\mu}V^0_{\mu}$

four-quark operators are generated (next order is $\alpha_s^3/8N_c$)

SPT's yield

•• SPT's yield
$$\sqrt{\text{VSA}} \qquad \sqrt{\text{condensate}^2}$$

$$\sqrt{\text{VSA}} = \frac{2}{f_\pi^2} \left[-\langle \Omega/P^b P^b/\Omega \rangle + \langle \Omega/S^0 S^0/\Omega \rangle \right] \approx \frac{2}{f_\pi^2} \Sigma_\chi^2 [1]$$

$$\mathsf{tw} \quad <\pi^3 \, / \, P^3 P^3 \, / \, \pi^3 > \, = \frac{2}{f_\pi^{\, 2}} \Big[<\Omega / \, P^b P^b \, / \, \Omega > \, - \, <\Omega / \, S^0 S^0 \, / \, \Omega > \Big] \approx - \frac{2}{f_\pi^{\, 2}} \Sigma_\chi^2 \Big[1 \Big]$$

$$\cos \ <\pi^b \, / \, P^0 P^0 \, / \, \pi^b > \, = \, \frac{2}{f_\pi^{\, 2}} \Big[<\Omega / \, P^0 P^0 \, / \, \Omega > \, - \, <\Omega / \, S^b S^b \, / \, \Omega > \Big] \approx \frac{2}{f_\pi^{\, 2}} \Sigma_\chi^2 \Big[1 - 1 \Big] = 0$$

••• VSA gives the last \approx relation and $<\pi/V_{\mu}^{0}V_{\mu}^{0}$, $T_{\mu\nu}^{0}T_{\mu\nu}^{0}/\pi>\approx0$

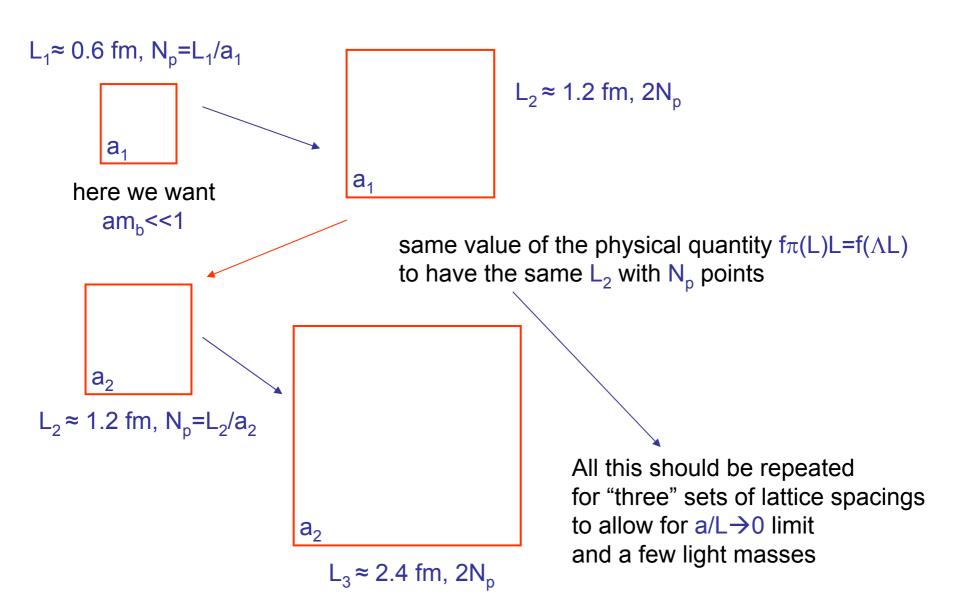
• $L_5 L_5 \rightarrow \Delta_{55} = -\frac{1}{2} < \pi |L_5 L_5| \pi >$

- Tentative conclusions
 - OS L₅ L₅ is relevant, but not L₆
 This is perhaps why c_{SW}≠0 seems to help
 - tw L₆ is relevant, but not L₅ L₅
 - W similar to "-tw"

Phenomenologically one finds

$$\begin{cases} m_{\pi^{os}}^2 > m_{\pi^{\pm}}^2 & @ N_f = 0, \ c_{SW} \neq 0 \\ m_{\pi^{os}}^2 >> m_{\pi^{\pm}}^2 & @ N_f = 0, \ c_{SW} = 0 \\ m_{\pi^{os}}^2 >> m_{\pi^{\pm}}^2 & @ N_f = 2, \ c_{SW} = 0 \end{cases}$$

tw
$$\begin{cases} m_{\pi^0}^2 > m_{\pi^\pm}^2 & @ N_f = 0, \ c_{SW} = 0 \\ m_{\pi^0}^2 < m_{\pi^\pm}^2 & @ N_f = 2, \ c_{SW} = 0 \end{cases}$$


Numerically

OS
$$a^2 \left[m_{\pi^{OS}}^2 - m_{\pi^{\pm}}^2 \right] = c_{OS} a^4 \Lambda^4$$
, $c_{OS} \approx 80-90$ @ $N_f = 2$, $c_{SW} = 0$

tw
$$a^2 \left[m_{\pi^0}^2 - m_{\pi^{\pm}}^2 \right] = -c_{tw} a^4 \Lambda^4$$
, $c_{tw} \approx 25-30$ @ $N_f = 2$, $c_{SW} = 0$

Finite Size Scaling for B-physics

Matching physics

For the physical quantity f_M one finally uses the formula

$$f_{M}(L_{1}) \left(\frac{f_{M}(L_{2})}{f_{M}(L_{1})}\right) \left(\frac{f_{M}(L_{3})}{f_{M}(L_{2})}\right) = f_{M}(L_{3}) \approx f_{M}(L_{\infty})$$

$$\underline{m_{b}} \qquad m_{b} \qquad (...m/2...)$$
chiral extrapolation continuum limit

- There is still a problem with the large b mass on L₂
 a possibility is to
 - put on L_2 an intermediate m with $m_bL_1 = mL_2 \rightarrow m = m_b/2$
 - then extrapolate last ratio 1/m → 1/m_b
- How much does it cost?
 - config's: 3 latt spac's x 4 latt's x 2 light sea m's = 24
 - correl's: $3 \times (m_b^{(1)} + m_b^{(2)}) \times (m_b + m_b + 3m + 3m) \times 4 \times 2$ (a L_1 L_1 L_2 L_2 L_3 I-v I-s)
- More conservative alternative (already feasible by ETMC)
 - stretch f_D to larger masses
 - fit f_B by interpolating through its static value

Conclusions

Super-B factory

- a challenge to the Lattice community
- an opportunity for
 joining efforts
 enlarging competences
 sharing configurations and algorithms
- a great chance for Lattice to have an impact on Particle Physics