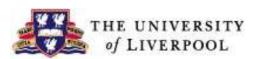
ω - ρ ; pion Form factor.

Chris Michael

c.michael@liv.ac.uk

University of Liverpool



ω - ρ mass difference

Flavour singlet vector meson mass matrix:

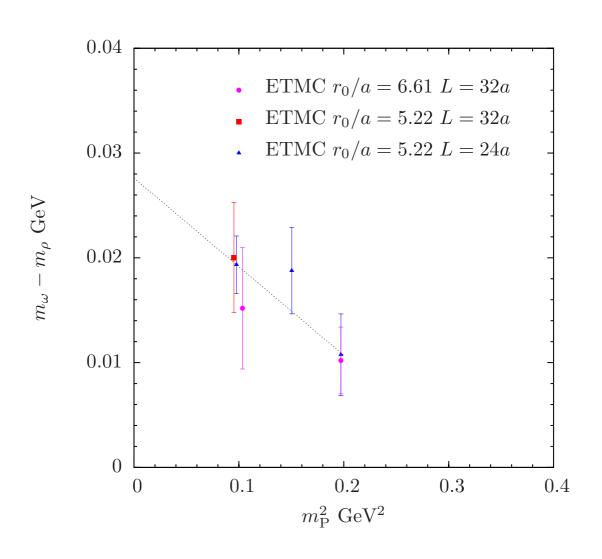
$$m$$
 connected \bigcirc x disconnected \bigcirc \bigcirc

$$m_{nn} + 2x_{nn} \qquad \sqrt{2}x_{ns}$$

$$\sqrt{2}x_{ns} \quad m_{ss} + x_{ss}$$

$$n=(u\bar{u}+\bar{d}d)/\sqrt{2}$$
 $m_{nn}=m_{
ho};\,m_{ss}=2m_{ns}-m_{nn}=2m_{K^*}-m_{
ho} o 1.012$ GeV. Approximately $m(\omega)=m(
ho)+2x_{nn}$ and $m(\phi)=m_{ss}+x_{ss}$. PDG: $m(\omega)-m(
ho)=7$ MeV but ho is very wide

ω - ρ mass difference

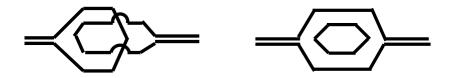


Craig; Chris; Carsten.

Models for vector meson masses

Models for quark-mass dependence:

Disconnected diagram can come from 2-body intermediate state:



 $V \rightarrow VP$ and $V \rightarrow PP$ contribute

$$m_P$$
 dep: m_P^3 $m_P^4 \log m_P$

Gives input to models of quark mass dependence of ρ . (needed for paper on extrapolation to physical ρ mass - to appear)

ω - ρ mixing

u-d mass difference breaks isospin invariance.

Correlator matrix (
$$\rho = (uu - dd)/\sqrt{2}$$
; $\omega = (uu + dd)/\sqrt{2}$) $C(\rho,\rho) = (C_{uu} + C_{dd})/2 + (D_{u|u} - D_{u|d} - D_{d|u} + D_{d|d})/2$ $C(\rho,\omega) = (C_{uu} - C_{dd})/2 + (D_{u|u} + D_{u|d} - D_{d|u} - D_{d|u})/2$ $= (C_{uu} - C_{dd})/2 + (D_{u|u} - D_{d|d})/2$ $C(\omega,\omega) = (C_{uu} + C_{dd})/2 + (D_{u|u} + D_{u|d} + D_{d|u} + D_{d|u} + D_{d|d})/2$ where we have used $D_{u|d} = D_{d|u}$.

Thus the ω to ρ cross-correlator is given by a difference of correlators with u and d quarks.

ω - ρ mixing

The ω - ρ mass matrix mixing element is given by

$$T_{\omega\rho} = \left(\frac{dm_{\rho}}{dm_{q}} + \frac{dm_{\omega}}{dm_{q}}\right) \frac{m_{u} - m_{d}}{4} \text{ with } m_{q} = (m_{u} + m_{d})/2.$$

$$\frac{dm_{\rho}}{dm_{q}} + \frac{dm_{\omega}}{dm_{q}} = 2\frac{dm_{\rho}}{dm_{q}} + \frac{d(m_{\omega} - m_{\rho})}{dm_{q}}$$

We measure second term and find that lattice QCD naturally produces effects of the correct size to explain the observed ω - ρ mixing.

ω - ρ summary

First lattice determination of ω - ρ mass difference.

Small effect but non-zero.

(Also gives non-strange component of ϕ and strange component of ω)

Full lattice determination of QCD contribution from quark mass difference (u-d) to ω - ρ mixing.

Pion form factor - Chiral PT

The pion form factor $F(q^2)$ is analytic with a cut $q^2 > 4m_\pi^2$.

$$F(q^2) = 1 + \frac{q^2}{\pi} \int_0^\infty 4dk^2 \frac{\text{Im}F(k)}{s(s - q^2 - i\epsilon)}$$

with LO discontinuity ${\rm Im}F(k)=k^3/(6\pi Ef^2)$ $s=E^2=4(m_\pi^2+k^2)$ This integral is logarithmically divergent and introducing a cut-off at $s=\Lambda^2$ we obtain

$$F(q^2) = 1 + \left(q^2 \log(\frac{z\Lambda^2}{m_\pi^2}) + 4m_\pi^2 \mathcal{H}(\frac{q^2}{4m_\pi^2})\right) \frac{1}{48\pi^2 f^2}$$

The factor of $z\Lambda^2$ in the logarithm can be related to the usual LEC L_6 and renormalisation scale μ in the field theory treatment. With that identification, the dispersion treatment gives an identical result to the conventional field theoretic evaluation at NLO.

Pion form factor - Chiral PT

Extrapolate the pion charge squared-radius $< r^2 >$ from lattice results at $m_\pi > 300$ MeV to the physical pion at $m_\pi \approx 140$ MeV.

 $< r^2 > = 6dF(q^2)/dq^2$ at $q^2 = 0$. Then DR gives convergent expression:

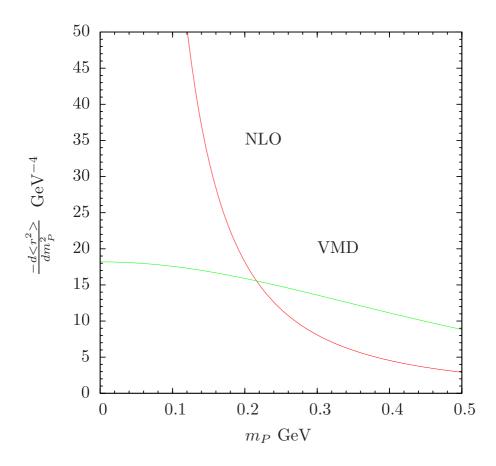
$$\frac{d < r^2 >}{dm_{\pi}^2} = -\frac{240}{\pi} \int_0^{\infty} dk^2 \frac{\text{Im}F(k)}{s^3}$$

Integrand is positive and peaked at $k^2=3m_\pi^2/4$ ($s\approx 7m_\pi^2$) whereas $m_\rho^2\approx 30m_\pi^2$ for physical pion. So ρ contribution is far away (compared to NLO ChPT) and can be absorbed in LEC L_6 .

What about for heavier pions?

Pion form factor - Chiral PT

Assuming $m_V^2=m_\rho^2+m_P^2-m_\pi^2$ then V peak is at peak of NLO expression when $m_V^2=7m_P^2$. This corresponds to $m_P\approx 0.3$ GeV. So only for $m_P<0.3$ GeV can the vector meson contribution be "ignored".



Estimate of NLO and VDM contributions

Pion form factor - Finite size effects

Even when the ρ meson mass is above the effective $\pi\pi$ threshold, (which is not yet the case in lattice studies) there can be significant finite size effects to the ChPT result.

Using ChPT at NLO in a finite (pbc) box of size L Borasoy, Bunton.

$$\mathcal{R} = \frac{d}{dm_{\pi}^2} \frac{6(F(q^2) - 1)}{q^2}$$

evaluated (from V_4) for (minimum) momentum $q=4\pi/L$ in Breit frame.

$$\mathcal{R}_L/\mathcal{R}_\infty-1$$
 > 10% for $m_\pi L<4.5$ > 1% for $m_\pi L<6.8$.

This is a much stronger finite size effect than that appropriate to m_π or f_π . These criteria are similar to the requirement that the ρ lies above the effective π π threshold at $E=2\sqrt{m_\pi^2+(2\pi/L)^2}$ which should then be close to the infinite volume value, so $m_\pi L < 2\pi$.