Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Ulrich Husemann

Humboldt-Universität zu Berlin

Sommersemester 2008

Klausur

- Zeit: Donnerstag, 24.07.08, 9:00-11:00 (s.t.)
- Ort: dieser Seminarraum (NEW15 2'201)
- Formalia (nur für offizielle Anmeldung):
 - Personalausweis und Studierendenausweis vorlegen
 - Empfang der Klausur mit Unterschrift bestätigen
- Bitte auf Klausurbögen schreiben, zusätzliche Blätter werden bei Bedarf gestellt
- Hilfsmittel: Stift, Taschenrechner

Kapitel 10

Teilchenphysik, Astroteilchenphysik und Kosmologie im 21. Jahrhundert

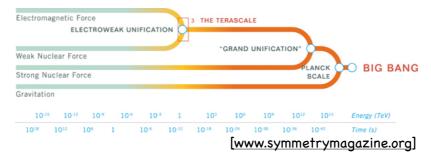
Physik des 20. Jahrhunderts

- Kleine Längenskalen: Quantenphysik (Planck, Bohr, Heisenberg, Schrödinger, ...) → Struktur der Materie
 - Teilchenphysik: Quantenfeldtheorie → Untersuchung immer kürzerer Längenskalen (d.h. höherer Energien)
 - Bausteine der Natur: Atom → p/n/e → Quarks/Leptonen
- Große Längenskalen: Allgemeine Relativitätstheorie (Einstein) → Struktur der Raum-Zeit
- Bisher keine akzeptierte Theorie, die auf allen Längenskalen gültig ist ("Theory of Everything") → Quantentheorie der Gravitation

SM der Teilchenphysik

- Standardmodell der Teilchenphysik (SM)
 - Experimentell mit hoher Präzision bestätigt
 - Bisher noch nicht entdeckt: Higgs-Boson → Tevatron? LHC?
- Offene Fragen und Probleme
 - Teilchenspektrum: warum 12 Teilchen in 3 Generation?
 - Erklärung für Massen und Kopplungen der Teilchen?
 - Kein Kandidat für dunkle Materie
 - Keine Gravitation
- SM = "effektive Theorie" für Energien unterhalb ca. 1
 TeV (vgl. Newtonsche Mechanik für v<<c)

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 12


5

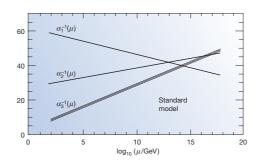
SM der Kosmologie

- Allgemeine Relativitätstheorie (ART) mit hoher Präzision bestätigt: Lichtbeugung, schwarze Löcher, expandierendes Universum, ... → Grundpfeiler des SM der Kosmologie (ΛCDM)
- Probleme:
 - Warum ist Gravitationskraft so schwach?
 - ullet Keine Erklärungen für kosmische Inflation und Wert der kosmologischen Konstante Λ
 - Keine Quantentheorie der Gravitation zur Behandlung von Singularitäten (Urknall, schwarze Löcher)
- ART = "effektive Theorie" für große Längenskalen

Längen- und Energieskalen

- Skalen im Standardmodell der Teilchenphysik:
 - QCD: Confinement der Quarks → 10⁻¹⁵ m, 200 MeV
 - Elektroschwache WW: Masse der Eichbosonen \rightarrow 10⁻¹⁸ m, 100 GeV
- Planck-Skala: 10⁻³⁵ m, 10¹⁹ GeV → "Hierarchieproblem": warum ist die elektroschwache Skala << Planck-Skala?

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 12

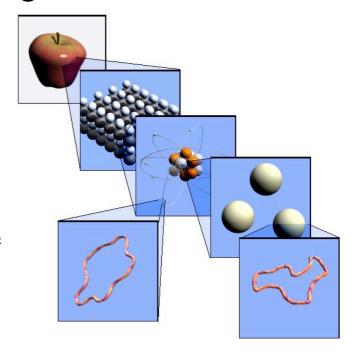

7

Supersymmetrie

- Symmetrieprinzip = Paradigma der Theoriebildung:
 Postuliere Symmetrie → leite Theorie ab
- Supersymmetrie (SUSY) = Symmetrie zwischen
 Bosonen und Fermionen → zu jedem SM-Teilchen gibt es ein Partnerteilchen
 - Bisher verträglich mit allen Beobachtungen
 - Enthält DM-Kandidat
 - Vereinigung der Kräfte
- SUSY-Energieskala: 1-10 TeV(?) → "Teraskala"
- Bisher keine Beobachtung von SUSY-Teilchen → LHC?

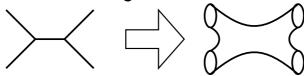
Vereinigung der Kräfte

- Ziel: Vereinigung der elektroschwachen und starken Kraft → Grand Unified Theories (GUT)
 - Idee: SM ist in umfassendere Theorie "eingebettet"
 - Vorhersagen: leichte
 Neutrinos, Protonzerfall
 (experimentell: >10³⁰ Jahre)
- Mit Supersymmetrie:
 Vereinigung der Kräfte an der GUT-Skala: ca. 10¹⁶ GeV


[Nature]

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 12

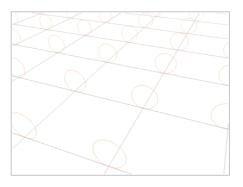
9

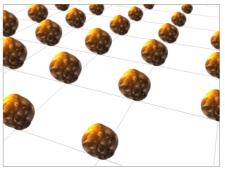

Stringtheorie

- Idee: punktförmige Teilchen → Strings
- String = Saite (offen oder geschlossen),
 d.h. eindimensionales
 Objekt mit
 Eigenschwingungen
- Typische Länge von Strings: Planck-Länge (10⁻³⁵ m)
- Stringtheorie = Quantentheorie von Strings

Stringtheorie

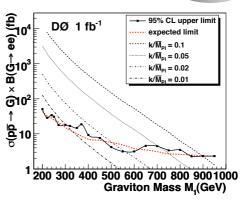
String-Wechselwirkungen:


- "Realistische" Stringtheorien beinhalten:
 - Supersymmetrie: "Superstrings"
 - Extra-Dimensionen (typisch: 10D = 4D-Raumzeit + 6D)
- Anregungszustände der Strings = Elementarteilchen
 - SUSY-Teilchenspektrum qualitativ vorhergesagt
 - Anregungen mit Spin 0 (Higgs) bis Spin 2 (Graviton) → Stringtheorie beschreibt Gravitation


Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 12

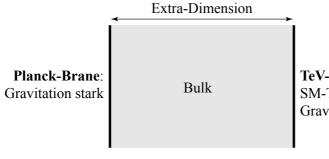
11

Extra-Dimensionen


- A. Einstein (1905): 3D-Raum +Zeit = 4D-Raumzeit
- Kaluza und Klein (1919): 5D-Raumzeit → an jedem Punkt im 3D-Raum gibt es eine "kompaktifizierte" (aufgerollte) Raumdimension
- Stringtheorie: An jedem Punkt im 3D-Raum gibt es eine kompaktifizierte 6D-Mannigfaltigkeit

Kaluza-Klein-Gravitonen

- Vorhersage vieler Modelle mit Extra-Dimensionen (ED)
 - Energieskala der ED um 1 TeV
 → für 6D: Radius der ED ca.
 10 MeV, d.h. R = 20 fm
 - Modell: 5D-Teilchen in aufgerollter ED = stehenden Wellen mit Wellenlängen n⋅2πR → beobachtbar in 4D: Kaluza-Klein-Gravitonen
- Test der Vorhersagen:
 Suche nach KK-Gravitonen


[Phys. Rev. Lett. 100 (2008) 091802]

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 12

12

Randall-Sundrum-Modell

"Brane World"-Idee (brane = Membran)

L. Randall

→ Gravitation schwach, weil sie auf Planck-Brane "lebt" und nur durch ED zu uns gelangt

R. Sundrum

Experimenteller Nachweis: KK-Gravitonen, z.B.
 Suche am Tevatron nach G → ee

Ausblick

- Teilchenphysik,
 Astroteilchenphysik und
 Kosmologie: gut
 getestete Modelle:
 - Standardmodell der Teilchenphysik
 - ΛCDM-Kosmologie
- Viele offene Fragen am Anfang des 21.
 Jahrhunderts:
 Revolution im Weltbild?

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 12

15