Working with
Perl modules

Lesson 3

Graphical Interfaces with Perl/Tk

Perl/Tk

Collection of modules that make the Tk toolkit
available for perl programmers
0 originally designed by John K. Ousterhout for Tcl only

0 adaptation to perl by Nick Ing-Simmons
Tk version 8 is implemented, also support for Tk 4
Available at DESY both for NT and UNIX

GUI builder available(specTcl, specPerl, specJava)
0 generates Tk4 code, not very useful
0 installed on /afs/ifth.de/products/SpecTcl/bin
0 sources at http://keck.ucsf.edu/~kvale/specperl.html

Outline of a Perl/Tk
Application

A typical Perl/Tk program does the following steps
0 create a main window
0 create widgets in the main window

0 define additional callbacks and key bindings

0 pack / place the widgets within the main window

0 display the windows and widgets and wait for events
Perl/Tk uses the object oriented features of Perl
Widgets are defined as subclasses of Tk

0 get loaded on demand

Elements of Tk

= To write GUl's the following elements are available
0 Standard widgets (15), derived (combined) widgets
0 Widgets that come in additional Tk modules (CPAN)
0 geometry managers to arrange the widgets
0 Widget attributes (color, size, ...)
0 Callbacks (routines that are triggered by events)
0 Bindings (association between events and callbacks)

Standard widgets

Very impressive demonstration of available
widgets by calling widget from the command line

0 program also displays its source code

normal Widgets : Label, Button, Menu, Text,
Scrollbar, Canvas, Entry and others

Container widgets
0 Toplevel (independent window like MainWindow)
0 Frame (grouping or separation of widgets)

Widget Options

Widget configuration done by options
Options get specified in anonymous hash

= widget specific options described in
perldoc Tk: :Widget

General options for all widgets (color, border,..) in
perldoc Tk: :options

Manipulation of options after widget creation by
Swidget->configure (-option => 'value'),

Arranging Widgets

Done by geometry managers

0 pack - placing according to available space for widget

0 grid - placement of widgets in a rectangular grid

0 place - placement by giving absolute or relative positions
Takes place within MainWindow or Frame

0 use only one geometry manager within one container

0 but in different frames different managers can be used
Geometry manager algorithm changeable by options

0 e.g. orientations n,e,s,w,ne,se,nw,sw,center

The pack geometry manager

= Calling sequence of widgets defines the layout
0 widgets get aligned at a side:
(-side => ’left,right, top,bottom’)
0 selected side determines size of "allocation rectangle”
0 placement within rectangle using the -anchor option
(-anchor => 'n,e,s,w,ne,se,sw,nw,center’)
0 expansion of widget to borders of the rectangle using
(-£i11 => ‘none,x,y,both’)
O for further information see perldoc Tk: :pack

Pack Demonstration

use Tk;

sub pack demo ({

my $main = MainWindow->new;

my $quit = Smain->Button (
-text => 'Welcome to Perl/Tk'
-command => sub {exit;});

Squit->pack;

}

pack demo;

MainlLoop;

Wid&]et arrangement using
pac

Allocation rectangles
-side=>’top’

-side=>’right’, -anchor=>’s’

size of rectangle determined by full available length
at side '-side’ and widget size (other side)

Pack Demonstration (2)

use Tk;
sub pack demo {
my Smain = MainWindow->new;
my $Squit = Smain->Button (
-text => 'Welcome to Perl/Tk',
-command => sub {exit;}),
Squit->pack;
my Squit2 = $main->Button (
-text => 'another button',
-command => sub {exit;}),
Squit2->pack (-side=>'right',6 -anchor=>'s"');
}
pack demo;

MainlLoop;

The grid geometry manager

grid subdivides the area into rectangles

every grid call creates a new row

number of widgets in call defines number of columns
Swl->grid($w2, $w3, .., -optl=>'vall’, ..);

explicit -row or -column |location possible

widgets can span several rows or columns

—-rowspan Or —columnspan

widget span can be coded into calling parameters

x Mmeans leave cell empty, - isrowspan, * is columnspan
12

Grid usage

Widgets occupy minimum required space

can be changed using option -sticky=>'n,s,e,w’
0 widget stickstosiden, s, e Or w

0 this changes size or placement of widget

Options to influence space between widgets
Further configuration parameters available

For a detailed description see perldoc Tk: :grid

A grid demo

use Tk;
sub grid demo ({
my S$Smain = MainWindow->new;
Smain->Button (-text=>'1")
->grid ($main->Button (-text=>'2"),
Smain->Button (-text=>'3"),
-sticky => 'ew');
Smain->Button (-text=>'4"')->grid('-"', 'x', -sticky => 'ew');
Smain->Button (-text=>'quit', -command => sub {exit;})
->grid (-columnspan => 3);
}
grid demo;

MainLoop;

The place geometry manager

Overlapping widgets can be created
0 not possible with the other two managers

Placement of widgets by
0 coordinates x and y (units: pixels on screen)
O relative position relx and rely with respect to parent

Size of widgets is determined by options
0 height and width (pixels)
0 relheight and relwidth w.r.t. parent

Anchor position within widget to place by option
0 —anchor => 'n,e,s,w,ne,se,nw,sw,center’

For further information see perldoc Tk: :place

Common methods

= All geometry managers offer common methods

0 to extract geometry information
packInfo (), gridInfo (), placeInfo

0 to undo the placement, this has the effect that
widgets become invisible but do not get destroyed

packForget () , gridForget (), placeForget

A simple database GUI

use DBI;
use Tk;

my $top = MainWindow->new; #iH create top level widget
$top->configure(-width => 350, -height => 250);

$top->minsize(350, 250);

$top->title ("Accounts in Zeuthen");

my $t_apps = $top->NoteBook(-ipadx => 6, -ipady => 6)->pack;
my $t_results = $top->Frame->pack; #Ht frame for results messages
my $t_common = $top->Frame->pack; #Ht frame for common buttons and messages

my $page1 = $t_apps->add ("Accounts”, -label => "Accounts"); #### Subpages for Notebook
my $page2 = $t_apps->add ("Persons", -label => "Persons");

my $page3 = $t_apps->add ("Phonebook", -label => "Phonebook");

my $page4 = $t_apps->add ("Misc", -label => "Options");

A simple database GUI (2)

%comp = (.accountname =>'%', uid=>", homedir =>'%%'
, expiredate => "%/, shell =>'%%");
%table = (accountname =>'Account’, uid => 'Unix User Id*
, homedir =>"'Home Directory', expiredate =>'Expire Date'
, shell =>"'Login shell*);
@entries = qw(accountname uid homedir expiredate shell);
for (@entries) {
my $fram = $page1->Frame->pack();
$fram->Menubutton(-text => $table{$ }, -width =>20, -menuitems =>
[
[Radiobutton => 'starts with', -variable =>\$comp{$_}, -value =>'%],
[Radiobutton => 'equals', -variable =>\$comp{$_}, -value =>"],
[Radiobutton => 'contains', -variable =>\$comp{$_}, -value =>'%%1,
1)->pack(-side =>"left', fill => 'X');
my $entry = $fram->Entry(-textvariable => \$shown{$_})->pack();
$entry->bind('<Key-Return>', \&main::search);

}

A simple database GUI (3)

$page1->Button(-text => "Search", -command => \&main::search)->pack;
$page1->Button(-text => "Clear", -command => \&main::clear)->pack;
$page1->Button(-text => "Delete Entry", -command => \&main::delete)->pack;
(
(

$page1->Button(-text => "Modify Entry", -command => \&main::modify)->pack;
$page1->Button(-text => "Add Entry", -command =>\&main::add)->pack;

my $foundEntries = $page1->BrowseEntry (-browsecmd=>\&main::select,
-textvariable => \$result,
-variable => \$selection)->pack;

$t_results->Label(-textvariable => \$result)->pack; ##Ht common buttons and messages
$t_common->Button(-text => "Exit", -command => \&main::cleanup)->pack;

MainLoop(); ### Now do the real work
Routines which do the database specific work(add, modify, delete,...) are not reproduced here
complete example with all subroutines in /afs/ifh.de/user/f/friebel/public/demo11.pl

The resulting GUI

Accounts Personenl Telefonbuch | Opticnen

Acocount |arinyo

Unixz User Id |5439

Home Directory |fhomefhydrafarinyo
Expire Datum |2000013100:00:00
Loginshell fbin/ksh

Search |
Cl=ar |

Delete Entry

Modify Entry

2dd Entrvy |
arinyc;5439; /home/hy ¥

Found 10 entries

Exit |

Definition of widget
attributes

get all widget attributes with configure ()
get one widget attribute with cget (-option)
set widget attributes with configure (-opt=>’val’)

More detailed discussion of some attributes:
0 variable text O color

0 mouse cursor 0 fonts

0 callbacks 0 tags

Documentation in perldoc Tk: :options

configure and cget

= To query options use
0 $Scuropt = $widget->cget(-option); #one value
0 Qcuropts = S$widget->configure (-option) ;
returns 2 values (alias_name, option_name) for aliases
else 5 values (optionname, dbname, class, defaultval, actval)

= To set options use
0 $widget->configure (-optl=>'vall',6 -opt2=>.);

Variable Text in Attributes

Reference to a variable is used in widget

option -textvariable (Scale widget: -variable)
my $gbutton = S$Smain->Button (
-textvariable => \S$a,
-command => sub {$a .= "!";});

Initial value gets set at widget creation time

Changes of the variable value are instantly visible
0 be careful to stay in scope of variable
0 variable has to exist at runtime (MainLoop)

Color attributes

= used in many options, e.q.
0 -background, -foreground, —activebackground
-highlightcolor,-selectcolor

= Usage of hex notation (rgb values like in HTML)
0 $color = "#d9d9d9";

= Usage of color names as defined in
0 rgb.txt (UNIX, e.g. for SUSE in /usr/X11R6/lib/X11)
0 Tk source code (pTk/mTk/xlib/xcolors.c)
0 definitions are identical, currently 752 names

Mouse cursor

= Default Cursor is arrow

= Shape of cursors may be changed
0 Cursor shape defined by widget option -cursor

$gbutton->configure (-cursor=>'handl') ;

0 List of cursor names in cursorfont.h in directory
\Perl\site\lib\Tk\X11 (Wxx, NT) or /
usr/X11R6/include/X11/ (or similar, UNIX)

= the new cursor shape gets displayed only in the
widget, for which the -cursor option was given

Font selection

with widget option -font (see perldoc Tk: :Font)

0 OS independent notation [family, size, type]
(family = Courier,Times,Helvetica, +os specific)
(type = normal,bold,italic,underline,overstrike)

-font=>[Helvetica,l4,italic]
0 OS specific notation: UNIX (see xlIsfonts)

-font=>'-*-helvetica-*-normal-*-180-*"'

0 OS specific notation: NT (see \WINDOWS\FONTS)

-font => "Times New Roman 12 normal’

Text width can be determined if font given
0 $widget->fontMeasure (font, text)

Callbacks

Option -command See perldoc Tk::callbacks

Option requires reference to subroutine or name
0 anonymous subroutine: -command=>sub {exit}

0 subroutine reference -command=>\ &subroutine

0 subroutine name -command=>’ subroutine’

or anon array, first element as above, further
elements are subroutine arguments
0 -command=>[\&sub, $argl, \Rarg2, $arg3 ...]

respect the scope of variables (as already said above)

27

Tags in the Text widget

used to

0 change the display options of text (font)

0 give a behavior to ranges of characters (binding)
0 deal with selected text

Usage in two steps (perldoc Tk::Text)

0 creation of a tag with tagConfigure

0 usage of tags in methods, tag gets passed in
parameter list

= Binding of (Tag, Event, Callback) see bind

Usage of tags

= Definition of tags

St->tagConfigure('blue', -foreground=>'blue');
St->tagConfigure('bold', -font=>['Courier',14,'bold']);
= |nsertion of text without/with tags into Text widget

$t->insert('end', "normal text\n");
St->insert('end', "blue text\n", 'blue');

= Adding tags to existing text (specify start and end)

S$t->tagAdd('bold', '2.0', 'end');

Events

= Events follow the X11 scheme for events

= more than 20 event types, e.g.:
0 Key, Button, Motion, Enter, Leave

= Event described as three part string
"<Modifier-Event-Detail>"
0 Modifier: control,shift,Alt,Button#,Double, Triple
0 for Unix also: Meta, Modl, ..Mod5
0 Detail: further describes event. key symbol, button#
L] Examples: <Alt-Key-a>,<Double-Button-1>,<Return>

Further Event Types

= Timer Events can be defined
0 $widget->after ($delay ms, $callback);
0 $widget->repeat ($delay ms, S$callback) ;

= |/O Events for asynchronous reading of files
0 $Smain->fileevent (FH, '’ readable’ ,$callback) ;
0 gets called as soon as new input in FH available
0 e.g. to program the tail(UNIX) functionality using Tk

= |dle Events for own tasks with low priority
0 $Smain->afterIdle (\&callback) ;

Bindings

Event triggers an action, if bound to callback
Many standard bindings
Own bindings using method bind possible

Bind a callback to an event:
0 Swidget->bind ("<Event>", \&subroutine);

Parameter passing like for callbacks:

0 Swidget->bind ("<Ev>", [\é&sub, $pl,
$P2/--]);

Evaluation of parameters done when event occurs
0 difference to callback definition with ~-command option 32

Bindings (2)

Bind a callback to tagged text (tag defined
previously with tagConfigure)

0 $t->tagBind('"tag", '"<Event>",
\ &subroutine) ,

Parameter passing using anon array as before

Well suited to program hypertext documents

0 when clicking on tagged text the callback can display
new text (hyperlink)

Information on defined event types with
0 @events = $widget->bind(ref $widget) ;

Event Information

= Fetched using function Ev ()

= Ev passed to callback as argument
0 $b->bind (”"<Key>”, [sub{$a="@Q ”;},Ev('k’)1);

0 first argument for callback is widget object
= function Ev () retrieves the following info:
0 coordinates, where event occurred : e.g. Ev (' x’)
0 which mouse button was pressed : Ev('b’)
0 which key was hit : Ev (' K’)

Literature

Learning Perl/Tk, Nancy Walsh, O'Reilly (1999)

Perl and the Tk Extension, Steve Lidie, Perl
Journal, Issues 1-9

http://www.perlmonth.com (Issues 2,3,6)

FAQ at ftp://ftp.uni-hamburg.de:

/pub/soft/lang/perl/CPAN/doc/FAQs/tk/
= perldoc Tk

