Working with
Perl modules

Lesson 2

CGI Programming

Automated Creation of Web
Pages

CGl.pm provides many methods to simplify the
creation of web pages out of perl scripts

Module contained in core perl

Main application is creation of dynamic web pages
Main features

0 processing of CGIl parameter lists

0 supports new HTML or arbitrary XML tags

0 not restricted to usage in CGl scripts

0 support for forms, cookies, style sheets

Other Perl based Tools for
HTTP

= Modules for integration into apache (Apache::xxx)

0 (not covered, see L.Stein, Writing Apache Modules with
perl and C, O'Reilly 1999)

= Other Module families for WWW programming
0 LWP: API for usage of the HTTP protocol (libwww)
0 URI: Dealing with Uniform Resource Locators (URL)
0 HTML: Analysis and processing of HTML pages
0 many more modules in the categories XML, CGl, ...

= Perl scripts for downloading and mirroring
0 lwp-mirror, lwp-download, lwp-request, Iwp-rget, w3mir

CGl.pm Basics

= CGl.pm methods bound to a CGl object
use CGI; Sg=new CGI; print $g->start html;

= Usage inconvenient, import of the methods as
functions using the tags defined within CGl.pm
use CGI gw(:standard) ;# :html3 for tables
print start html; # same as object call

= Nearly all HTML tags have function equivalent
<H1> => hl(); . => ul(..);
all upper/lower case variations equivalent: U1 (), UL()
there is already a tr therefore use Tr () for <TR>

CGl.pm Basics (2)

= Functions for new tags can be provided easily
use CGI gqw(:standard new) ;# function new

print new('text'); # yields <NEW>text</NEW>

= Start and end tags can be generated separately by
functions start xxx and end xxx

0 at least one of the functions has to be imported
use CGI gqw(:standard start ul);

print start ul, 'text',end ul;#text

HTML Syntax Conversion

= HTML attributes get converted to anon hash (arg 1)
<H1 ALIGN="LEFT"> => hl ({-align=>left});

= HTML contents can be filled into further arguments
<Hl>a test</H1l> => hl(’'a’,’test’);

= HTML lists can be bundled into one function call

li(‘red’), 1li(’'yellow’), 1li(’blue’) becomes
li(['red’, 'yellow’, ’'blue’])

Introductory Example

use CGI gw /:standard/;
print start html,
hl("a first test"),
end html;

becomes
<!'DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<HTML><HEAD><TITLE>Untitled Document</TITLE>
</HEAD><BODY><H1l>a first test</H1></BODY>
</HTML>

Web Page Generation

= Offline creation of pages using a perl script with
CGl.pm by perl script name 1

0 parameter required, otherwise console input expected
= CGl.pm for creation of dynamic pages (CGI script)
0 script has to be executable by webserver account

0 Webserver has to be configured properly
0 directory for CGl scripts with proper access control
7 naming schema for CGl scripts (e.g. extension .pl)

0 script has to fulfil security requirements (taint safe)

HTTP Protocol Issues

First example as content of a HTML page o.k.

Not suited as CGl script, server and browser need
toread HT TP header
HTTP Header contains status code and other fields

0 gets added by the header method
print header; #prints Content-type: text/html

Several HTML features can be controlled using
arguments in the header call

0 content type, language, expiration, authentication,...
9

HTTP Header Generation

= Header generation controlled by anonymous hash
as first (and only) parameter for the header method

0 -type, -expires, -status, -content-encoding etc.

= To generate a header that forces a password
dialog and sets expiration time of one day:
print header (-type => 'text/html’,
-expires => '+1d',
-status => '401 Authentication required’
'-auth-type' => 'Basic');

Debugging

= CGIl error messages are written to the web server
logfile, usually restricted access to that file

= Several options to debug without the error logfile

0 offline testing using options -w and -T and under use
strict; pragma

0 process critical parts under eval control, report
errors (contained in @!) to users

0 use CGl::Carp to redirect errors to browser
use CGI::Carp gw(fatalsToBrowser) ;

Creating a dynamic HTML
Page

print header, # output Content-Type:
start html ({-title =>'HTML example',
-bgcolor =>'gray'}),
h2('a list demo'),

ul (1i([i('italic'), # anon array for list
b('bold'),
tt('fixed width font')])),

hr, p,

h2('link generation'),

'Start page of ',
a({href=>'http://www.desy.de'}, 'DESY"'),

end html; # separate start/end tags
12

Tables

= Created with the table, Tr, th and td functions

= Creation in one go sometimes difficult
0 subdivide task (see example on next page)

= Can be done nevertheless (elegant but hard to read)
#example from M.Schilli, Linux Magazin 3/98 (in German)
Scontent = [["column 1", "column 2", "column 3"],
[1,2,3]1, [4,5,6], [7,8,9] 1;
print table(Tr(map {th($)} shift @$content), "\n",
map {Tr(map {th($)} $)."\n"} @Scontent);

Tables, the easy way

#example from M.Schilli, Linux Magazin 3/98 (in German)

use CGI gw /:standard :html3/;

print header;

print start_html, hr, h2('A table demo');

foreach $row (1..2) {
$rowcontent = "";
foreach $col (1..2) { $rowcontent .= td("field $row/$col"); }
$tablecontent .= Tr($rowcontent) . "\n";

ki

print table(
{-border => 1, -bgcolor => 'orange'}, "\n",
Tr(th("column 1"), th("column 2")), "\n",
$tablecontent

Forms

« Enclosed in the start form and end form functions

= Widgets available as function calls
popup_menu radio_group
textfield textarea
scrolling_list checkbox_group
checkbox submit reset

= For an exhaustive example see demo in

A simple forms demo

use CGI gqw/:standard :html3/;
print start form,
checkbox (' —name' => 'color',
'-checked' => 'checked',
'-value' => 'yes',
'-label' => 'Yes?'),
submit ('-name' => 'submit button'
'-value' => 'Send'),
reset (),

end;form;

Parameter Processing

= Function param(key) returns CGl parameter key
passed to the script

= Function without args retrieves all parameters
= Key corresponds to -name attribute in form

if (defined param('color')) ({
Scolor = param('color'); ...

}
= depending on context param returns scalar or array

@colors = param('color') ;

Remembering state

= The HTTP protocol is stateless

= Remembering the state between subsequent
iInvocations of a script requires additional tools
0 cookies, generated by the server, held in the browser
0 hidden fields in parameter passing, not displayed

0 combination of hidden field parameters or cookies that act
as keys and a database on the server to look up the
values

= Cookies can be switched off, hidden fields can be

suppressed by explicitly CGIl with parameters

Remembering state (2)

= Hidden fields
0 get transferred using hidden ()

= Cookies
0 query values using $val=cookie (-name=>'id') ;
0 retrieve the names of all cookies: @ids=cookie () ;
0 set using cookie (-name=>'id',-value=>'val') ;
= Very few cookies per visited site are good practice
0 use -domain attribute to have site wide cookies

0 further attributes like expiry date should also be set
19

A cookie example

use CGI gw/:standard/;
if(defined ($id=cookie(-name => "'"ID'))) { # Cookie is set!
print header();
print b("Welcome back, customer with ID $id!");
} else {
new customer
$id = unpack ('H*', pack('Nc', time, $$ % Oxff));

$cookie = cookie('-name' => 'ID"',
'-value' => $id,
'-expires' => '+1lh',
'-domain' => '_ifh.de');

print header('-cookie' => $%$cookie);

print b("Welcome, you get customer ID $id");

Incremental Updates (NPH
Scripts)

= Incremental updates done by NPH scripts
0 perform a server push
0 perl output has to be unbuffered

0 header attributes determine output in parts
0 support by module CGl::Push
0 not useable, incompatible with HTTP/1.1 and SSL

namic u dates usin
CYent pull P J

= Refresh algorithm of server gets used

0 CGIl generates header with ~-refresh=>$time
attribute and URL pointing to itself

0 Script gets called again after $time seconds

0 refresh cycle is stopped when header is called
without new -refresh attribute

0 Parameter passing within URL possible

Dynamic Updates Example

use CGI gw/:standard/;
Stime = 1;

Scount = param('count');
Scount ||= 10; Scount--;
if (Scount) {

print header (-refresh => "$time; URL=SENV{SCRIPT NAME}?
count=$count") ;

my $date = localtime (time) ;

print start html('test'), hl($date),"\n", end html;
else {

print header,
start html ('no further testing, sorry'),
hl('the clock is broken now'), end html;

Topics not covered

= There is support for the following topics in CGl.pm
0 URL redirection (better done with mod_perl)
0 Cascading Style Sheet
0 Javascript Support
0 Image Maps
0 Frames

Literature

Official Guide to Programming with CGl.pm, Lincoln Stein,
Wiley (1998)

perldoc CGI

http://stein.cshl.org/~Istein/talks/perl_conference/cute tricks
http://www.perl.com/reference/query.cgi?cqi

