Working with
perl modules

Lesson 1

Ties
Databases and DBI

Ties

= The function associates a variable with an
underlying data structure and a set of subroutines

= Manipulation of the variables perform the
appropriate actions on the data structure

0 implemented by a well defined set of subroutines that
perform basic actions (fetch, store, delete,...)

0 standard interface of the variables is changed
0 ties bind methods from packages to variables

Ties and Objects

Tied variables act like objects
0 interface is defined
0 methods from a specific package get called
0 difference: predefined set of methods

Ties have the same procedures for finding the
proper method (polymorphism) as objects

0 ties tend therefore to be slow (as the OO methods)

Tie Implementation

Select a package (class) for implementing a tie
Code methods with predefined names
0 for a scalar: TIESCALAR, FETCH, STORE, DESTROY
0 for a hash: 9 methods, e.g. FIRSTKEY, NEXTKEY
Tie the methods to the variable:

this gets translated to
Sclass->TIESCALAR (@Qargs; # constructor

Further methods get called when using $var
removing the special interface:

Tie Applications

The following data types can be tied
0 Scalars, Arrays, Hashes, File Handles
Many interesting applications using this mechanism
0 many modules on CPAN dealing with tie
0 using hashes most popular (like for object storage)
0 Tied file handles most recent

0 many tie modules provide interfaces to databases
(LDAP, DB(UNIX) based, DBI(perl) based)

Core Perl Database Support

known from UNIX: DBM and similar "simple" DB's

at least one of SDBM, NDBM, GDBM, MLDBM, Berkeley DB
contained in core Perl

all these DB's implement a disk based hash
used when single table with (key, value) sufficient

is first choice (simultaneous updates, transactions)
installed at DESY (both on NT and UNIX)

SDBM (simple Database) guaranteed to be implemented in perl
MLDBM has support for storing data structures as values
Perl provides an interface to tie these databases to hashes

Usage of Databases with tie

Connecting to a database means calling tie

use Fcntl; #Constants O RDWR and O CREAT
#Berkeley DB

Read and write is done using hash assignments
Sval=Sh{keyl}; S$h{key2}='new text’;

Erasing rows means deleting a key/value pair
delete S$h{key2};

Saving changes back to disk by calling untie

A working example

use Fecntl; # for the constants O RDWR and O CREAT
use SDBM File; # Simple DB, in Perl always available

tie %hash, 'SDBM File', 'C:\Temp\mydb',O RDWR|O CREAT,0666;
Shash{keyl} = 11.2;

Shash{key2} = 'text';

$date = localtime(time); #use the date stamp as key
Shash{$date} = '';

print "In memory: ", join ("\n\t", keys %hash), "\n";
untie %hash;

print "After untie:", keys %hash, "\n";

tie %hash,'SDBM File', 'C:\Temp\mydb',O RDWR|O CREAT,0666;
print "Read from file: ", join ("\n\t", keys %hash), "\n";

untie %hash;

Other DBM Applications

NIS (Yellow Pages) maps are DBM Files
0 simple access using the tie mechanism

Converting between different DBM formats

0 by two different tie calls and copying $new=%o01ld
Text file manipulation using Berkeley DB(RECNO)
0 then simple line addressing possible

See perldoc AnyDBM for a comparison of DB's

Try to use tie instead of dbmopen (portability)

Editing text with Berkeley DB

use DB File;
tie @lines, 'DB File', 'tfile', O RDWR|

O CREAT, 0666,$DB RECNO;
Slines[0] = 'New first line';
push @lines, 'yet another new line';
Slines[5] = 'replacement for line 6';
Slines[8] = 'last line';
$lines[-1] = 'remove this line later';
Slast = pop @lines; #last line gets removed

untie (@lines;

Databases and DBI

DBI (Data Base Interface) is the binding glue
between perl and relational SQL databases

0 has the components (database independent)
0 and the specific 's (Data Base Drivers)
Homogeneous API to access different RDBMS
0 coding of applications independent from RDBMS
Similar concept in the Windows world ()
Access to databases with ODBC Interface with
0 DBD::ODBC or Win32::0DBC

Further information on DBI

perldoc DBI; perldoc DBD: :Oracle ...

Programming the Perl DBI, Alligator Descartes & Tim Bunce,
O'Reilly (2000)

DBl Homepage: http://dbi.perl.org

DBI talks by Tim Bunce (files DBI_Talk...tar.gz):
ftp://ftp.uni-hamburg.de:

/pub/soft/lang/perl/CPAN/authors/id/TIMB/

Structured Query Language

Required to work with a RDBMS
Perl passes SQL to RDBMS, no checks done

Here only simple constructs mentioned

INSERT INTO table (colx, coly, ...) VALUES (vali,
val2, ...)

UPDATE table SET colx = val1 WHERE coly LIKE val2
DELETE FROM table WHERE colz=num1

SELECT colx, coly, ... FROM table WHERE ... ORDER
BY colz, ...

Different syntax already for WHERE test operators

0 string comparison: UPPER(val) LIKE .. or val
CLIKE ..

13

List of supported RDBMS

= Many RDBMS supported (CPAN), at DESY:
[]

0 access to and ADO databases (Windows)

0 CSV text files (comma separated values)

0 all above mentioned databases on all platforms
using the intermediate driver

= Usage with
#use DBD: :xxx usually not required

= Some RDBMS have additional requirements

The DBI/DBD Interface

DBI defines a set of methods, which are
implemented in the drivers for the various RDBMS

DBD can define additional methods that are

database specific

Methods at the database or table level require a
, Is obtained using

Operations within a table require a
, Is obtained e.g. with prepare

BBI di?gram (from Talk T.

DBl Module
</ I \>
DBD::Oracle DBD::Informix DBD::Other

Oracle Server Informix Server Other Server

Access to Oracle from DBI

= Windows Users have to install SQLPIlus (Netinstall)
= UNIX Users have to set ORACLE _HOME:

= Windows users must not set this variable

uerying a Database
racl

use DBI;
Sdbname
SENV{ORACLE HOME}="/afs/desy.de/products/oracle/product/rdbms'
if Sdbname /dbi:Oracle:/i and $70 ne 'MSWin32';
= SENY{ORACLE USERID} || 'read/read';
$dbh = DBI->¢onnect ($dbname, $dbuser, '');
$sth = $dbh->prepare (qq{select * from

where NAME like ?});
Ssth->execute ('Fri%'); # insert parameters for ?
S$fieldnames = $sth->{'NAME'}; # field names

while ($row = $sth->fetchrow arrayref) {
print "Srow->[1l]: $fieldnames->[2]=Srow->[2]\n"; }
$Ssth->finish; Sdbh->disconnect;

Optimization for Speed

= Use instead of connect
0 new database connections are expensive
= Use and iInstead of do
0 one prepare call can be reused for many executes

0 use placeholders 7 in prepare and substitute them
by using execute arguments

= Use fetchrow arrayref iInstead of fetchrow array
0 transferring pointers causes less data moves

Error handling

Most DBI methods return undef on error
Then $DBI: :errstr contains the error message

Automatic error checking can be switched on
0 Shandle->{RaiseError}=1; #die on error
0 Shandle->{PrintError}=1; #warn on error

0 $DBI: :errstr gets printed in both cases

Error handling can be done using eval
Shandle->{RaiseError} = 1;

eval{ ...; Shandle->method; ...};

if ($Q@) { ... better error handling ... } 2

Debugging

DBI has built in tracing (globally or at handle level)

Tracing can be controlled using
0 DBI->trace($Slevel) ; # global tracing
0 Shandle->trace ($Slevel); # at handle level

Redirecting trace output into a file
0 Shandle->trace (Slevel, $file);

Can be controlled with ENV variable pB1_TRACE
DBI_TRACE=level DBI_TRACE=file DBI_TRACE=level=file

usually levels 1 and 2 are more useful

Database Proxies

Used to connect to databases where
0 the database itself is not remotely accessible
0 there is no driver for the current platform

0 only a limited number of clients should have direct
access

DBI::ProxyServer needs to get access to the DB
DBI::Proxy connect to the server using TCP

Proxy package has built in configurable data
compression, encryption and access control

The Proxy Architecture

DBD::Proxy

< >

RPC::pClient

DBD::ProxyServer

Client

RPC::pServer

Server

Using a Proxy Server

= Proxy Server gets started from command line
0 dbiproxy --localport portnumber

(UNIX: in /products/perl/bin, for NT in PATH)
= Standalone Application becomes client by

0 changing the DB name in the connect call or

0 setting DB name in ENV variable DBI_AUTOPROXY,
then no change of (standalone) application!

mysgl access using a proxy

= mysql driver only on NT, Linux and Solaris installed

= Start a proxy server on one of the above platforms
use DBI;
$dsn = 'DBI:mysql:test zeulist ;host=mysqlsrv.ifh.de’;
dsn has to begin with dbi:xxx: and be last part of $dbname !!!
#Sdbname = "DBI:Proxy:hostname=ilos.ifh.de;port=1206;dsn=$dsn";
$ENV{DBI AUTOPROXY} = 'hostname=ilos.ifh.de;port=1206";
$Sdbh=DBI->connect ($dsn, 'readuser'),; #$dbh=DBI->connect ($dbname, ..)
$sth = $dbh->prepare ("SELECT * FROM phone WHERE lastname like ?");
S$Ssth->execute ('Vogt') ;
while (Qrow = $sth->fetchrow array) {

print join(", ", Qrow[1l,2]), "\n"; }
$sth->finish;
$dbh->disconnect;

Portability of DBl Code

DBI based applications platform independent as perl
and DBI working under UNIX and Windows

ProxyServer increases flexibility (acces of Windows

only databases like Access from UNIX!)

DBI code not completely independent of RDBMS

0 SQL dialects and SQL extensions vary with RDBMS

0 DBD driver limitations

For RDBMS independence restrict SQL usage to simple

constructs and code remaining functionality in perl (may

even be useful for time critical programs)
26

Advanced DBI functionality

Multithreading for DBI
Forking DBI server (since perl 5.6 also for NT)

DBD::Multiplex driver

0 to keep several DB's in sync

0 load balancing for queries

0 fail safe operation

0 consistence checking of several DB's

Tie::DBI to completely hide the SQL syntax
0 e.g. $hash{table}->{field} 42 ; #SQL UPDATE

27

