
1

Working with
perl modules
Lesson 1

Ties

Databases and DBI

2

Ties

■ The tie function associates a variable with an
underlying data structure and a set of subroutines

■ Manipulation of the variables perform the
appropriate actions on the data structure
◆ implemented by a well defined set of subroutines that

perform basic actions (fetch, store, delete,…)
◆ standard interface of the variables is changed
◆ ties bind methods from packages to variables

3

Ties and Objects

■ Tied variables act like objects
◆ interface is defined
◆ methods from a specific package get called
◆ difference: predefined set of methods

■ Ties have the same procedures for finding the
proper method (polymorphism) as objects
◆ ties tend therefore to be slow (as the OO methods)

4

Tie Implementation

■ Select a package (class) for implementing a tie
■ Code methods with predefined names

◆ for a scalar: TIESCALAR, FETCH, STORE, DESTROY

◆ for a hash: 9 methods, e.g. FIRSTKEY, NEXTKEY

■ Tie the methods to the variable:
tie $var, $class, @args; this gets translated to
$class->TIESCALAR @args; # constructor

■ Further methods get called when using $var
■ removing the special interface: untie $var;

5

Tie Applications

■ The following data types can be tied
◆ Scalars, Arrays, Hashes, File Handles

■ Many interesting applications using this mechanism
◆ many modules on CPAN dealing with tie
◆ using hashes most popular (like for object storage)
◆ Tied file handles most recent
◆ many tie modules provide interfaces to databases

(LDAP, DB(UNIX) based, DBI(perl) based)

6

Core Perl Database Support
■ known from UNIX: DBM and similar "simple" DB's

◆ at least one of SDBM, NDBM, GDBM, MLDBM, Berkeley DB
contained in core Perl

◆ all these DB's implement a disk based hash
◆ used when single table with (key, value) sufficient

■ Berkeley DB is first choice (simultaneous updates, transactions)
◆ installed at DESY (both on NT and UNIX)

■ SDBM (simple Database) guaranteed to be implemented in perl
■ MLDBM has support for storing data structures as values
■ Perl provides an interface to tie these databases to hashes

7

Usage of Databases with tie

■ Connecting to a database means calling tie
use Fcntl; #Constants O_RDWR and O_CREAT

use DB_File; #Berkeley DB

tie %h,’DB_File’,$file,O_RDWR|O_CREAT,0666,$DB_BTREE;

■ Read and write is done using hash assignments
$val=$h{key1}; $h{key2}=’new text’;

■ Erasing rows means deleting a key/value pair
delete $h{key2};

■ Saving changes back to disk by calling untie
untie %h;

8

A working example
use Fcntl; # for the constants O_RDWR and O_CREAT

use SDBM_File; # Simple DB, in Perl always available

tie %hash,'SDBM_File','C:\Temp\mydb',O_RDWR|O_CREAT,0666;

$hash{key1} = 11.2;

$hash{key2} = 'text';

$date = localtime(time); #use the date stamp as key

$hash{$date} = '';

print "In memory: ", join ("\n\t", keys %hash), "\n";

untie %hash;

print "After untie:", keys %hash, "\n";

tie %hash,'SDBM_File','C:\Temp\mydb',O_RDWR|O_CREAT,0666;

print "Read from file: ", join ("\n\t", keys %hash), "\n";

untie %hash;

9

Other DBM Applications

■ NIS (Yellow Pages) maps are DBM Files
◆ simple access using the tie mechanism

■ Converting between different DBM formats
◆ by two different tie calls and copying %new=%old

■ Text file manipulation using Berkeley DB(RECNO)
◆ then simple line addressing possible

■ See perldoc AnyDBM for a comparison of DB's
■ Try to use tie instead of dbmopen (portability)

10

Editing text with Berkeley DB

use DB_File;

tie @lines, 'DB_File', 'tfile', O_RDWR|
O_CREAT, 0666,$DB_RECNO;

$lines[0] = 'New first line';

push @lines, 'yet another new line';

$lines[5] = 'replacement for line 6';

$lines[8] = 'last line';

$lines[-1] = 'remove this line later';

$last = pop @lines; #last line gets removed

untie @lines;

11

Databases and DBI

■ DBI (Data Base Interface) is the binding glue
between perl and relational SQL databases
◆ has the components DBI (database independent)
◆ and the specific DBD's (Data Base Drivers)

■ Homogeneous API to access different RDBMS
◆ coding of applications independent from RDBMS

■ Similar concept in the Windows world (ODBC)
■ Access to databases with ODBC Interface with

◆ DBD::ODBC or Win32::ODBC

12

Further information on DBI

■ perldoc DBI; perldoc DBD::Oracle ...
■ Programming the Perl DBI, Alligator Descartes & Tim Bunce,

O'Reilly (2000)
■ DBI Homepage: http://dbi.perl.org
■ DBI talks by Tim Bunce (files DBI_Talk…tar.gz):
■ ftp://ftp.uni-hamburg.de:

/pub/soft/lang/perl/CPAN/authors/id/TIMB/

13

Structured Query Language
■ Required to work with a RDBMS
■ Perl passes SQL to RDBMS, no checks done
■ Here only simple constructs mentioned

INSERT INTO table (colx, coly, ...) VALUES (val1,
val2, ...)

UPDATE table SET colx = val1 WHERE coly LIKE val2
DELETE FROM table WHERE colz=num1
SELECT colx, coly, ... FROM table WHERE ... ORDER

BY colz, ...

■ Different syntax already for WHERE test operators
◆ string comparison: UPPER(val) LIKE .. or val

CLIKE ..

14

List of supported RDBMS

■ Many RDBMS supported (CPAN), at DESY:
◆ Oracle, mysql
◆ access to ODBC and ADO databases (Windows)
◆ CSV text files (comma separated values)
◆ all above mentioned databases on all platforms

using the intermediate Proxy driver
■ Usage with

use DBI; #use DBD::xxx usually not required

■ Some RDBMS have additional requirements

15

The DBI/DBD Interface

■ DBI defines a set of methods, which are
implemented in the drivers for the various RDBMS

■ DBD can define additional methods that are
database specific

■ Methods at the database or table level require a
database handle, is obtained using connect

■ Operations within a table require a
statement handle, is obtained e.g. with prepare

16

DBI Module

Perl Application

DBD::OtherDBD::InformixDBD::Oracle

Oracle Server Informix Server Other Server

DBI diagram (from Talk T.
Bunce)

17

Access to Oracle from DBI

■ Windows Users have to install SQLPlus (Netinstall)
■ UNIX Users have to set ORACLE_HOME:

$ENV{ORACLE_HOME} =
'/afs/desy.de/products/oracle/product/rdbms'

■ Windows users must not set this variable

18

Querying a Database
(Oracle)
use DBI;

$dbname = 'dbi:Oracle:desy';

$ENV{ORACLE_HOME}='/afs/desy.de/products/oracle/product/rdbms'

if $dbname =~ /dbi:Oracle:/i and $^O ne 'MSWin32';

$dbuser = $ENV{ORACLE_USERID} || 'read/read';

$dbh = DBI->connect($dbname, $dbuser, '');

$sth = $dbh->prepare(qq{select * from

bolewski.teilnehmer where NAME like ?});
$sth->execute('Fri%'); # insert parameters for ?

$fieldnames = $sth->{'NAME'}; # field names

while ($row = $sth->fetchrow_arrayref) {

 print "$row->[1]: $fieldnames->[2]=$row->[2]\n"; }

$sth->finish; $dbh->disconnect;

replace for other RDBMS, DB, table

19

Optimization for Speed

■ Use connect_cached instead of connect
◆ new database connections are expensive

■ Use prepare and execute instead of do
◆ one prepare call can be reused for many executes

◆ use placeholders ? in prepare and substitute them
by using execute arguments

■ Use fetchrow_arrayref instead of fetchrow_array
◆ transferring pointers causes less data moves

20

Error handling

■ Most DBI methods return undef on error
■ Then $DBI::errstr contains the error message
■ Automatic error checking can be switched on

◆ $handle->{RaiseError}=1; #die on error

◆ $handle->{PrintError}=1; #warn on error

◆ $DBI::errstr gets printed in both cases
■ Error handling can be done using eval

$handle->{RaiseError} = 1;

eval{ ...; $handle->method; ...};

if ($@) { ... better error handling ... }

21

Debugging

■ DBI has built in tracing (globally or at handle level)
■ Tracing can be controlled using

◆ DBI->trace($level); # global tracing

◆ $handle->trace($level); # at handle level

■ Redirecting trace output into a file
◆ $handle->trace($level, $file);

■ Can be controlled with ENV variable DBI_TRACE
DBI_TRACE=level DBI_TRACE=file DBI_TRACE=level=file

usually levels 1 and 2 are more useful

22

Database Proxies

■ Used to connect to databases where
◆ the database itself is not remotely accessible
◆ there is no driver for the current platform
◆ only a limited number of clients should have direct

access
■ DBI::ProxyServer needs to get access to the DB
■ DBI::Proxy connect to the server using TCP
■ Proxy package has built in configurable data

compression, encryption and access control

23

The Proxy Architecture

Application

DBI

DBD::Proxy

DBD::mysql

RPC::pClient

DBD::ProxyServer

RPC::pServer

DBI

Client Server

24

Using a Proxy Server

■ Proxy Server gets started from command line
◆ dbiproxy --localport portnumber

(UNIX: in /products/perl/bin, for NT in PATH)
■ Standalone Application becomes client by

◆ changing the DB name in the connect call or
◆ setting DB name in ENV variable DBI_AUTOPROXY,

then no change of (standalone) application!

25

mysql access using a proxy

■ mysql driver only on NT, Linux and Solaris installed
■ Start a proxy server on one of the above platforms
use DBI;

$dsn = 'DBI:mysql:test_zeulist;host=mysqlsrv.ifh.de';

dsn has to begin with dbi:xxx: and be last part of $dbname !!!

#$dbname = "DBI:Proxy:hostname=ilos.ifh.de;port=1206;dsn=$dsn";

$ENV{DBI_AUTOPROXY} = 'hostname=ilos.ifh.de;port=1206';

$dbh=DBI->connect($dsn, 'readuser'); #$dbh=DBI->connect($dbname,..);

$sth = $dbh->prepare("SELECT * FROM phone WHERE lastname like ?");

$sth->execute('Vogt');

while (@row = $sth->fetchrow_array) {

 print join(", ", @row[1,2]), "\n"; }

$sth->finish;

$dbh->disconnect;

26

Portability of DBI Code

■ DBI based applications platform independent as perl
and DBI working under UNIX and Windows

■ ProxyServer increases flexibility (acces of Windows
only databases like Access from UNIX!)

■ DBI code not completely independent of RDBMS
◆ SQL dialects and SQL extensions vary with RDBMS
◆ DBD driver limitations

■ For RDBMS independence restrict SQL usage to simple
constructs and code remaining functionality in perl (may
even be useful for time critical programs)

27

Advanced DBI functionality

■ Multithreading for DBI
■ Forking DBI server (since perl 5.6 also for NT)
■ DBD::Multiplex driver

◆ to keep several DB's in sync
◆ load balancing for queries
◆ fail safe operation
◆ consistence checking of several DB's

■ Tie::DBI to completely hide the SQL syntax
◆ e.g. $hash{table}->{field} = 42;#SQL UPDATE

