Orientation
Basics

Lesson 2

Classes and Objects in Perl
Inheritance

Basic Concepts

(cited from Damian Conway: Object Oriented Perl, p. 2)

- . anything that provides a way to locate, access,
modify, and secure data

. description of what data is accessible through a
particular kind of object, and how to access that data

. means by which an object's data is accessed,
modified or processed

:the way in which existing classes of objects can
be upgraded to provide additional data or methods

. the way that distinct objects can respond
differently to the same message, depending on the class

Objects

= Contain the real data (or pointers to it)
= Data in objects are called attribute values
= Access to data should go via the object(address)

= Access should be done by subroutines only
0 these subroutines are called
0 in some languages this is enforced
0 Perl allows direct access to the data (discouraged!!)

Classes

Describe a particular kind of object

0 what belong to such a kind of object
0 how to create an object ()

0 how to get access to the attributes ()

The methods related to the kind of object define
the class

The class itself can define data ()
0 access to these class data with class methods

The object is modeled after the class definition, it is
a class , the class is the blueprint forit .

Inheritance

A Class can be defined in terms of other classes
0 the derived class inherits from the base class
0 inheritance can extend to several levels (hierarchies)
O inheritance from several base classes is allowed:

Inheritance hierarchy describes degree of abstraction
useful, blueprint for derived classes

serve as placeholder for methods in
derived classes (define interface, but no working code)

Polymorphism

Methods with the same name in several classes
Proper method gets called according to kind of object

0 derived classes have common ancestor
0 all methods defined in base classes
0 methods get redefined in derived classes if required

0 Classes only share method with the same name

0 method not guaranteed to exist, fallback mechanism
required, if method not provided in the class

Further Concepts

= Aggregation
0 collection of related objects form new objects
0 the new objects can have additional methods

0 simple objects easier to debug, complex structures
can be built from simple building blocks

= Persistence

0 Objects survive the end of the program

0 done by serializing objects and storing it in
databases, files etc.

OO0 and perl related
documentation

Tutorials that come with perl
0 perlreftut, perlboot, perltoot, perltooc, perlbot
Book: Object Oriented Perl, Damian Conway,

Manning Publications, 2000

Perl specific: Collection of links on OOP in Perl (not
up to date, 1998)

0 http://genome-www.stanford.edu/perlOOP/

Classes in Perl

= A class in perl is built upon the package concept
= A package is a separate name space
0 Namespaces get switched by the package command
0 All data types of a package are globally visible
0 Adressing possible using package name: : prefix
0 The default namespace is main:: or simply ::

Sa=0; #Variable Smain::a or S$::a

Sa=1; #Variable Smyclass::a

sub inc {$a++;} #Subroutine &myclass::inc ¢

Package (De)lnitialization

= |n each package (also in main) code that gets
executed as early/late as possible can be defined
BEGIN { statements }
END {statements }

= Analogy to awk
print "Step 2\n";
BEGIN { print "Step 1\n"; }

Modules

= Modules are files () that contain packages

= Modules usually contain package of same name
0 but a module can contain more than one package
0 or a package can consist of several modules

= Modules get loaded with the command

0 a module has to return true (last lineis 1;)

0 old perl4 style programs were using .pl files that got
loaded using require

0 for old .p1 files there are more recent .pm modules
11

Looking up modules

Modules are searched in directories whose names
are stored in the variable

There is a correspondence between use Module;

statements and file names
look for file Test.pm

look for file Test/Log.pm
The search path for modules can be extended by

0 using the command line flag -i
0 changing the contents of @INc using BEGIN blocks

Module Creation

= can be done using the h2xs program

creates the skeleton files

Test/Log/Log.pm Test/Log/Makefile.PL
Test/Log/test.pl Test/Log/Changes Test/Log/MANIFEST

0 documentation should be written in perlpod format
0 plain old documentation, see perldoc perlpod
0 installation with perl Makefile.PL; make;

make test; make install

= For much more information see e.qg.
http://world.std.com/~swmcd/steven/perl/

Package and lexical
Variables

= Package variables always global, can be accessed
iIn main program and other packages

= lexical variables do not belong to a package

0 created using my $var; or my ($varl, $var2);
0 access only within block (or file or eval string)
0 get erased when leaving scope (refcount = 0)
= Lexical variables help in encapsulating data
0 (see closures)
= See also perldoc perltooc

Perl objects

= Each call to the constructor has to give a new
object, i.e. a separate container for data

= Cannot be achieved with ordinary arrays or hashes
0 Will always be tied to a specific storage location

0 Anonymous hashes and arrays provide distinct and
adjustable portions of memory to hold object data

$pl={}; $p2={}; print "$pl, $p2\n";
Spl->{attribute} = "value";
0 The storage has to be labeled according to the class
0 This is "magically” done by the function bless .

Perl Objects

= An object is a "blessed" reference to data

0 blessing is done with Class name (=package name)
Class myclass

no named hash, could be accessed/modified by name!
Srecord = {num=>1, str=>’a’};
print ref ($record); # HASH

Object S$record

print ref ($record) ; # myclass

= Object creation usually done in subroutine
(called constructor), but e.g connect also legal

Methods (1)

Object methods and Class methods are normal
subroutines

Call has to be done using additional syntax

Object method call

Class method call
Class->method (Qargs) , Or

Methods (2)

= Called subroutine gets an additional first argument
0 Class name for class methods
0 Object (blessed reference) for object methods

= The class an object belongs to is obtained with ref
sub Hello {

print "A Hello from class $class\n";

}
Srecord->Hello; # call of the object m.ethod.18

Introductory Example

package Simple: :Test;

use strict;

sub new {
my (Sself, Shashref) = @ ;
Shashref = {} unless S$hashref;
bless Shashref, S$self;

Introductory Example(2)

sub get num { my S$self=shift; $self->{num} }
sub set num { my S$self=shift;
Sself->{num}=shift;
}
sub str { my (Sself,$arg)=Q ;
$self->{str}=Sarg if @ =1;

return S$self->{num}

Introductory Example(3)

package main;

my S$objl=new Simple::Test {str=>'Objl', num=>7};

my Sobj2=Simple: :Test->new({str=>'0bj2', num=>3});

my $num = Sobjl->get num;

$objl->set num($num*$num) ;

my Sstr = S$obj2->str();

Sobj2->str ("New String") ;

use Dumpvalue;

my $dumper = new Dumpvalue;

print $dumper->dumpValue ($objl),
Sdumper->dumpValue (Sobj2), "\n";

Inheritance

Inheritance in Perl is Inheritance of methods

@ISA contains class names which are inherited from

package Printer; # current package is Printer
use vars qw(@ISA); # to use Q@ISA under use strict;
Printer is a Net: :Node

: more than one element in @IsSA

Inheritance is recursive, i.e. may span several levels

Inheritance Hierarchy

= |Inheritance is used to look for methods
0 If method not in current class

Ot
Ot
0t
0t
0t
0t

nen searc
nen searc
nen sSearc
nen Searc
nen searc

nen searc

N first for methods in $1sA[0]

N in parents of $ISA[0]

N in further elements of @1sa

N IN class UNIVERSAL

N for method AUTOLOAD in current class

N for method AuTOLOAD in parents

0 otherwise report an error

Inheritance Hierarchy (2)

= |nheritance rules can be described as follows

0 Search from current position to top of inheritance tree
for a given method

0 Continue search from left to right in @Isa
0 All methods inherit from class UNIVERSAL

0 If method not found this way then look for method
AUTOLOAD using the same rules

The class SUPER

= SUPER is a pseudo package

= Usage: method in parent class performs a partial
task (delegation), remaining part in current method

= SUPER: :test |looOks in parents of the current class
0 whole inheritance hierarchy is searched
O first found method test gets used

Usage of the SUPER class

package Simple: :Test;
use vars gw(QISA);
@ISA=qw (Simple) ;
sub print2 {

my $self = shift;

print "First the specific print2 is called ...\n";

}
package Simple;
sub print2 {

print "Then the generic one: object belongs to ", ref shift,
" \nn :

}
Sobj->print2;

The AUTOLOAD method

= AUTOLOAD is called if a method does not exist

= $SAUTOLOAD contains name of the missing method
0 $AUTOLOAD is a variable of the current package

0 AUTOLOAD sees object reference as first parameter
= Can be used to replace similar get/set methods
Disadvantage: method lookup always triggered
= AUTOLOAD Is called for every undefined method

A simple AUTOLOAD
example

use vars qw (SAUTOLOAD) ;

sub AUTOLOAD {
print "AUTOLOAD called: S$SAUTOLOAD\n";
my ($self, $val) = @ ;

$Sself->{$1} = $val i;.$val && SAUTOLOAD =~ /.
*::set (\w+)/;

return $self->{$1} if SAUTOLOAD =~ /.*::get (\w+)/;
}

package main;

$obj->set value("a string");
print $obj->get value(), "\n";

Optimized AUTOLOAD

= AUTOLOAD generates method on request
0 see example in "Object Oriented Perl” p.94/95

= A method has to be generated on the fly whose
name is the value of $AUTOLOAD

= Solution using the typeglob operator and a closure
* { SAUTOLOAD} sub {return $ [0]->{Sattr}};
= Only first call triggers AUTOLOAD

Optimized AUTOLOAD
example

sub AUTOLOAD {

print "AUTOLOAD called: $AUTOLOAD\n";

my ($self, S$val) = @ ;

if (SAUTOLOAD =~ /.*::fetch (\w+)/) {
no strict '"refs";
my Sattr = $1;
dynamic code generation #i##
* {$SAUTOLOAD} = sub {return $§ [0]->{$attr}};
print "missing function $AUTOLOAD has been defined\n";
return $ [0]->{$1};

}
package main;
print $obj->fetch value(), "\n";

print $obj->fetch value(), "\n";

Automatic method
generation

In simple cases classes consist of a constructor and
set/get methods for attributes

Methods look similar

Method generation according to templates possible
Several modules in standard Perl and on CPAN
Class::Struct in core Perl

Class::MethodMaker on CPAN (not installed here)

Class::Struct

Generates Perl Code for new and accessors
provides subroutine struct
simplest usage with
use Class: :Struct;
struct Test => {

name => 'S,

scores => '@’

};

Disadvantage: not well suited for complex tasks

Questions and answers

= What is contained in the hash $main:: (also %::)
0 It contains the symbol table (can be inspected and printed)

= Can | have subroutines that act both as object method and as
a ordinary subroutine
sub print3 {
if (ref $_[0])

print "called as method from object ", ref shift,
"\n"

}

print "Subroutine arguments: @ \n";

}

Questions and answers (2)

Can | call a constructor using an object method (construct an
object of the same type instead of a given class)
sub new2 {
my (Scaller, Rargs) = Q@ ;
my Sclass = ref Scaller || Scaller;
bless {}, $class;
}
my $Sobj3 = Simple: :Test->new2;
my $obj4 = $Sobj3->new2;
print "\obj3 and \$obj4 are objects: " ,ref $obj3,
" and ",ref $obj4, "\n";

