
1

Object
Orientation
Basics
Lesson 2

Classes and Objects in Perl

Inheritance

2

Basic Concepts

(cited from Damian Conway: Object Oriented Perl, p. 2)
■ Object: anything that provides a way to locate, access,

modify, and secure data
■ Class: description of what data is accessible through a

particular kind of object, and how to access that data
■ Method: means by which an object's data is accessed,

modified or processed
■ Inheritance:the way in which existing classes of objects can

be upgraded to provide additional data or methods
■ Polymorphism: the way that distinct objects can respond

differently to the same message, depending on the class

3

Objects

■ Contain the real data (or pointers to it)
■ Data in objects are called attribute values
■ Access to data should go via the object(address)
■ Access should be done by subroutines only

◆ these subroutines are called object methods
◆ in some languages this is enforced
◆ Perl allows direct access to the data (discouraged!!)

4

Classes

■ Describe a particular kind of object
◆ what attributes belong to such a kind of object
◆ how to create an object (constructor)
◆ how to get access to the attributes (methods)

■ The methods related to the kind of object define
the class interface

■ The class itself can define data (class data)
◆ access to these class data with class methods

■ The object is modeled after the class definition, it is
a class instance, the class is the blueprint for it

5

Inheritance

■ A Class can be defined in terms of other classes
◆ the derived class inherits from the base class
◆ inheritance can extend to several levels (hierarchies)
◆ inheritance from several base classes is allowed: multiple

inheritance
■ Inheritance hierarchy describes degree of abstraction
■ Abstract classes useful, blueprint for derived classes
■ Abstract methods serve as placeholder for methods in

derived classes (define interface, but no working code)

6

Polymorphism

■ Methods with the same name in several classes
■ Proper method gets called according to kind of object
■ Inheritance polymorphism

◆ derived classes have common ancestor
◆ all methods defined in base classes
◆ methods get redefined in derived classes if required

■ Interface polymorphism
◆ Classes only share method with the same name
◆ method not guaranteed to exist, fallback mechanism

required, if method not provided in the class

7

Further Concepts

■ Aggregation
◆ collection of related objects form new objects
◆ the new objects can have additional methods
◆ simple objects easier to debug, complex structures

can be built from simple building blocks
■ Persistence

◆ Objects survive the end of the program
◆ done by serializing objects and storing it in

databases, files etc.

8

OO and perl related
documentation

■ Tutorials that come with perl
◆ perlreftut, perlboot, perltoot, perltooc, perlbot

■ Book: Object Oriented Perl, Damian Conway,
Manning Publications, 2000

■ Perl specific: Collection of links on OOP in Perl (not
up to date, 1998)
◆ http://genome-www.stanford.edu/perlOOP/

9

Classes in Perl

■ A class in perl is built upon the package concept
■ A package is a separate name space

◆ Namespaces get switched by the package command

◆ All data types of a package are globally visible
◆ Adressing possible using package_name:: prefix

◆ The default namespace is main:: or simply ::
$a=0; #Variable $main::a or $::a

package myclass;

$a=1; #Variable $myclass::a

sub inc {$a++;} #Subroutine &myclass::inc

10

Package (De)Initialization

■ In each package (also in main) code that gets
executed as early/late as possible can be defined
BEGIN { statements }

END {statements }

■ Analogy to awk
print "Step 2\n";

BEGIN { print "Step 1\n"; }

11

Modules

■ Modules are files (suffix .pm) that contain packages
■ Modules usually contain package of same name

◆ but a module can contain more than one package
◆ or a package can consist of several modules

■ Modules get loaded with the use command
◆ a module has to return true (last line is 1;)
◆ old perl4 style programs were using .pl files that got

loaded using require

◆ for old .pl files there are more recent .pm modules

12

Looking up modules

■ Modules are searched in directories whose names
are stored in the @INC variable

■ There is a correspondence between use Module;
statements and file names
use Test; # look for file Test.pm

use Test::Log; # look for file Test/Log.pm

■ The search path for modules can be extended by
◆ using the command line flag -i

◆ changing the contents of @INC using BEGIN blocks

13

Module Creation

■ can be done using the h2xs program

h2xs -AXn Test::Log creates the skeleton files
Test/Log/Log.pm Test/Log/Makefile.PL

Test/Log/test.pl Test/Log/Changes Test/Log/MANIFEST

◆ documentation should be written in perlpod format
✦ plain old documentation, see perldoc perlpod

◆ installation with perl Makefile.PL; make;
 make test; make install

■ For much more information see e.g.
http://world.std.com/~swmcd/steven/perl/

14

Package and lexical
Variables

■ Package variables always global, can be accessed
in main program and other packages

■ lexical variables do not belong to a package
◆ created using my $var; or my ($var1, $var2);

◆ access only within block (or file or eval string)
◆ get erased when leaving scope (refcount = 0)

■ Lexical variables help in encapsulating data
◆ (see closures)

■ See also perldoc perltooc

15

Perl objects
■ Each call to the constructor has to give a new

object, i.e. a separate container for data
■ Cannot be achieved with ordinary arrays or hashes

◆ Will always be tied to a specific storage location
◆ Anonymous hashes and arrays provide distinct and

adjustable portions of memory to hold object data
$p1={}; $p2={}; print "$p1, $p2\n";

 $p1->{attribute} = "value";

◆ The storage has to be labeled according to the class
◆ This is "magically" done by the function bless

16

Perl Objects

■ An object is a "blessed" reference to data
◆ blessing is done with Class name (=package name)
package myclass; # Class myclass

no named hash, could be accessed/modified by name!

$record = {num=>1, str=>’a’};

print ref($record); # HASH

bless $record, ’myclass’; # Object $record

print ref($record); # myclass

■ Object creation usually done in subroutine new
(called constructor), but e.g connect also legal

17

Methods (1)

■ Object methods and Class methods are normal
subroutines

■ Call has to be done using additional syntax
■ Object method call
$object->method(@args);

■ Class method call
Class->method(@args); or
Class::method(@args);

18

Methods (2)

■ Called subroutine gets an additional first argument
◆ Class name for class methods
◆ Object (blessed reference) for object methods

■ The class an object belongs to is obtained with ref
sub Hello {

 my $self = shift;

 my $class = ref $self;

 print "A Hello from class $class\n";

}

$record->Hello; # call of the object method

19

Introductory Example

package Simple::Test;

use strict;

sub new {

 my ($self, $hashref) = @_;

 $hashref = {} unless $hashref;

 bless $hashref, $self;

}

20

Introductory Example(2)

sub get_num { my $self=shift; $self->{num} }

sub set_num { my $self=shift;

 $self->{num}=shift;

}

sub str { my ($self,$arg)=@_;

 $self->{str}=$arg if @_=1;

return $self->{num}

}

21

Introductory Example(3)

package main;

my $obj1=new Simple::Test {str=>'Obj1',num=>7};

my $obj2=Simple::Test->new({str=>'Obj2', num=>3});

my $num = $obj1->get_num;

$obj1->set_num($num*$num);

my $str = $obj2->str();

$obj2->str("New String");

use Dumpvalue;

my $dumper = new Dumpvalue;

print $dumper->dumpValue($obj1),

$dumper->dumpValue($obj2), "\n";

22

Inheritance

■ Inheritance in Perl is Inheritance of methods
■ Inheritance is controlled by the @ISA array
■ @ISA contains class names which are inherited from

package Printer; # current package is Printer

use vars qw(@ISA); # to use @ISA under use strict;

@ISA=('Net::Node'); # Printer is a Net::Node

■ multiple inheritance: more than one element in @ISA
@ISA=('Net::Node','Device');

■ Inheritance is recursive, i.e. may span several levels

23

Inheritance Hierarchy

■ Inheritance is used to look for methods
◆ If method not in current class
◆ then search first for methods in $ISA[0]

◆ then search in parents of $ISA[0]

◆ then search in further elements of @ISA

◆ then search in class UNIVERSAL

◆ then search for method AUTOLOAD in current class

◆ then search for method AUTOLOAD in parents

◆ otherwise report an error

24

Inheritance Hierarchy (2)

■ Inheritance rules can be described as follows
◆ Search from current position to top of inheritance tree

for a given method
◆ Continue search from left to right in @ISA

◆ All methods inherit from class UNIVERSAL

◆ If method not found this way then look for method
AUTOLOAD using the same rules

25

The class SUPER

■ SUPER is a pseudo package
■ Usage: method in parent class performs a partial

task (delegation), remaining part in current method
■ SUPER::test looks in parents of the current class

◆ whole inheritance hierarchy is searched
◆ first found method test gets used

26

Usage of the SUPER class
package Simple::Test;

use vars qw(@ISA);

@ISA=qw(Simple);

sub print2 {

 my $self = shift;

 print "First the specific print2 is called ...\n";

 $self->SUPER::print2;

}

package Simple;

sub print2 {

 print "Then the generic one: object belongs to ", ref shift,
"\n";

}

$obj->print2;

27

The AUTOLOAD method

■ AUTOLOAD is called if a method does not exist
■ $AUTOLOAD contains name of the missing method

◆ $AUTOLOAD is a variable of the current package

◆ AUTOLOAD sees object reference as first parameter

■ Can be used to replace similar get/set methods
■ Disadvantage: method lookup always triggered
■ AUTOLOAD is called for every undefined method

28

A simple AUTOLOAD
example

use vars qw ($AUTOLOAD);

sub AUTOLOAD {

 print "AUTOLOAD called: $AUTOLOAD\n";

 my ($self, $val) = @_;

 $self->{$1} = $val if $val && $AUTOLOAD =~ /.
*::set_(\w+)/;

 return $self->{$1} if $AUTOLOAD =~ /.*::get_(\w+)/;

}

package main;

$obj->set_value("a string");

print $obj->get_value(), "\n";

29

Optimized AUTOLOAD

■ AUTOLOAD generates method on request
◆ see example in ”Object Oriented Perl” p.94/95

■ A method has to be generated on the fly whose
name is the value of $AUTOLOAD

■ Solution using the typeglob operator and a closure

*{$AUTOLOAD} = sub {return $_[0]->{$attr}};
■ Only first call triggers AUTOLOAD

30

Optimized AUTOLOAD
example

sub AUTOLOAD {

 print "AUTOLOAD called: $AUTOLOAD\n";

 my ($self, $val) = @_;

 if ($AUTOLOAD =~ /.*::fetch_(\w+)/) {

 no strict "refs";

 my $attr = $1;

dynamic code generation

 *{$AUTOLOAD} = sub {return $_[0]->{$attr}};

 print "missing function $AUTOLOAD has been defined\n";

 return $_[0]->{$1};

 }

}

package main;

print $obj->fetch_value(), "\n";

print $obj->fetch_value(), "\n";

31

Automatic method
generation

■ In simple cases classes consist of a constructor and
set/get methods for attributes

■ Methods look similar
■ Method generation according to templates possible
■ Several modules in standard Perl and on CPAN
■ Class::Struct in core Perl
■ Class::MethodMaker on CPAN (not installed here)

32

Class::Struct

■ Generates Perl Code for new and accessors
■ provides subroutine struct
■ simplest usage with
use Class::Struct;

struct Test => {

name => ’$’,

scores => ’@’

 };

■ Disadvantage: not well suited for complex tasks

33

Questions and answers

■ What is contained in the hash %main:: (also %::)
◆ It contains the symbol table (can be inspected and printed)

■ Can I have subroutines that act both as object method and as
a ordinary subroutine
sub print3 {

 if (ref $_[0]) {

 print "called as method from object ", ref shift,
"\n"

 }

 print "Subroutine arguments: @_\n";

}

34

Questions and answers (2)

■ Can I call a constructor using an object method (construct an
object of the same type instead of a given class)
sub new2 {

 my ($caller, @args) = @_;

 my $class = ref $caller || $caller;

 bless {}, $class;

}

my $obj3 = Simple::Test->new2;

my $obj4 = $obj3->new2;

print "\obj3 and \$obj4 are objects: " ,ref $obj3,

 " and ",ref $obj4, "\n";

