
1

Basic
Concepts in
Perl

Lesson 4

Tuning, Debugging and
Documenting your Code

2

Debugging

■ Best strategy: write bug free programs
■ Perl helps you with that by using

◆ perl -w #Bug in perl: -w is optional
◆ use strict; #forces strong(er) typing

◆ Usage of CPAN Modules (usually well tested)
◆ Usage of recipes from the literature (see Intro)

■ If your program nevertheless seems to have bugs
◆ print out intermediate results (poor mans debugger)
◆ use a real debugger

3

Printing Debug Data

■ Simply use print $data if $debug;
■ use more advanced techniques for structured data

use Dumpvalue;

 my $dumper = new Dumpvalue;

 print "The variable \$client type ", ref
($client), " contains:\n";

 $dumper->dumpValue($client);

we don't really want that:

$dumper->dumpvars('main'); #all Variables

4

TMTOWTDI
■ There is more than one way to do it:

use Data::Dumper;

 print "The variable \$client type ", ref
($client), " contains:\n", Dumper($client);

■ Printing can be influenced by variables
■ Output is valid perl code

5

Using Code development
tools

■ Call a program verifier (like lint, C language)
◆ perl -MO=Lint,all Ex5.pl

■ Produce a cross reference listing (very long!!)
◆ perl -MO=Xref Ex5.pl > Ex5_references.txt

■ Look for more tools based on perl code generators
◆ see CPAN and e.g. the Camel book 3rd edition

6

Using the Perl debugger

■ Perl comes with its own debugger
◆ call with perl -d scriptname

◆ important debugger commands (mostly 1 char)
h (help) n (next) s (step) t (trace mode)

l (list next) v (prev) . (current line)

b (set breakpoint) c (cont after break)

p expr (print) x expr (extended print)

q (quit)

◆ Execute perl statements in the debugger: perl -de 0

7

Graphical debuggers

■ ptkdb is graphical frontend for perl -d
◆ based on perl/Tk, runs on many platforms, slow

■ ddd is a powerful debugger under UNIX
◆ has also support for perl (is also a frontend)

■ emacs has also some debug support
■ Integrated development environments

◆ Perlbuilder from Solutionsoft used in this course
◆ colorful, with many gadgets, some minor bugs (2.0g)
◆ also useable for program development

8

Use the correct algorithms
■ An extremely short wrong program
■ perl -e '("a"x2000) =~ /((a+?)+)/'
■ Dumps core, why?

9

Unsafe Data

■ Perl programs can get external data in many ways
◆ user input from STDIN

◆ Arguments passed from the command line
◆ Output of external programs that gets processed

■ Perl marks such data as tainted and offers checks
■ Under Option -T perl does not transfer control to

external processes that get passed tainted data
■ SetUID programs will, CGI scripts should always

run under taint (-T) control

10

Making tainted scripts safe

■ Is not a guarantee for safety within the perl code
$line = <>; #$line is tainted

`echo $line`;#insecure, run time error with -T

■ The tainted status gets cleared by
◆ usage of regex substrings ($1, $2, ...)

◆ calling external programs with the full path or setting $ENV{PATH}
to a known value

◆ use of exec and system not using the shell (see above)
◆ change an unsafe pipe into a "secure" exec
open IP, "-|" or exec 'echo', $tainted;

instead of open IP, "$tainted|";

11

Optimization in general

■ Rule 1: don't optimize
◆ Rule 2: don't optimize

✦ Rule 3: (experts only) don't optimize yet
■ Is optimization really required

◆ If yes, time or space optimization
■ Balance between optimization and readability
■ Cost of optimization

◆ Adding a CPU may be cheaper than manpower

12

Profiling
■ Profile your program

perl -d:DProf script writes profile data tmon.out

dprofpp generates profiling information

(many options to influence output)

can be done in one go
dprofpp -p script

■ Do only optimize hotspots
◆ Where most of the time is spent
◆ Try to avoid excessive number of function calls

13

Benchmarking
■ Benchmark your program

use Benchmark;

$count = 100;

$t = timethis($count, "CODE");

Benchmark data contained in object $t, get also printed
■ For finer grained resolution use calls to time() instead and

use Time::HiRes;

it will replace the time calls (of 1 second resolution)

14

Optimization tips

■ Avoid calling external programs (pipes from/to
commands, backticks, the system function
◆ look on CPAN for perl modules that do the job
◆ examples: UNIX commands du, df, ls, ps

◆ write your own modules, use the XS interface for
speed (calling C Code from perl)

◆ or use the module Inline.pm (inline C code in perl,
similar to the XS interface, easier to handle) Installed
at DESY (UNIX)

✦ Majority of modules is using XS, not inline

15

Inlining C Code with
Inline.pm

use Inline C => <<'END_C';

void greet () { /* define C function */

 printf("Hello, World\n");

}

END_C

greet; # call C function from perl

■ C function gets compiled on first invocation or if
code has changed. (good for testing, less suitable
for stable production code)

■ Subsequent script calls use compiled code

16

Calling Perl from C
(Inline::CPR)

/usr/local/bin/cpr

int main(void) {

 printf("Hello World, I'm running Perl %s\n",

 CPR_eval("use Config; $Config{version}")

);

 return 0;

}

■ Execution of script with cpr scriptfile
■ Gets compiled on first invocation or after changes
■ Subsequent script calls use compiled code
■ No longer supported at DESY (not used)

17

Compiling Perl Code

■ Compiler included in distribution
■ Not as useful as one could think

◆ Not yet production quality
◆ Mainly parsing step saved (faster startup)
◆ Remaining code not much faster
◆ No longer platform independent
◆ If e.g. generating C resulting code hardly readable

18

Using Threads

■ Starting with 5.8 new thread model "ithreads"
◆ Called Interpreter threads
◆ Was available internally already in 5.6

■ Perl binary and modules containing XS get
compiled differently if threads are used

■ Threaded perl now standard, runs slightly slower
■ In threads no data are shared by default

◆ Most pure perl modules therefore thread safe
■ threaded code harder to write, harder to debug

◆ timing problems, deadlocks, shared access to data

19

Threads (2)

■ Threads covered in a tutorial: perldoc perlthrtut
■ Startup penalty for threads, therefore

◆ Using few long living threads is advantageous
◆ Benchmark to see if the threaded program is worth the

effort
■ Most rules of parallel programming apply

◆ Several models to use threads (e.g. master/slave)
◆ Synchronization between threads (wait for the others)

20

Documenting your code
■ Inline documentation is the preferred way

◆ POD (plain old documentation) format is used
■ Documentation is started with an empty line followed by a pod

directive, e.g.
=pod
=head1

followed by more directives and ordinary text
and ended with a blank line followed by
=cut

followed by another blank line

21

A pod example
=head1 NAME

sudo - execute a command as another user

=head1 SYNOPSIS

B<sudo> B<-V> | B<-h> | B<-l> | B<-L> | B<-v> | B<-k> | B<-K> |
[B<-H>] [B<-P>] [B<-S>] [B<-b>] | [B<-p> I<prompt>]
[B<-c> I<class>|I<->] [B<-a> I<auth_type>]
[B<-u> I<username>|I<#uid>] I<command>

=head1 DESCRIPTION

B<sudo> allows a permitted user to execute a I<command> as the
superuser or another user, as specified in the I<sudoers> file.

22

Converting pod
documentation

■ Common commands for displaying and converting pod
perldoc sudo.pod # ASCII

pod2man sudo.pod | groff -man -Tps # PS

pod2html sudo.pod # HTML
■ For more format conversions and options see the man

pages of the above commands and

pod2latex

pod2usage

pod2text

23

Suggestions for own
Experiments

■ Rewrite one of the Example Scripts that it gets taint
safe, i.e. it runs under perl -T

■ Generate a list of all Variables using dumpvars
■ Check the speed of the stat function on different

platforms using the Benchmark module
■ Document your own perl scripts

24

Check your knowledge of
perl

■ I prepared 20 multiple choice questions (see
attached document)
◆ Try to answer them using manuals, perl, this tutorial, ...
◆ Some of the choices represent frequent coding flaws

■ Answers to these questions can be checked by
contacting "kursserver" using the client program /
afs/ifh.de.user/f/friebel/public/kursclient

◆ HTML form also available (see link to these slides)

■ Answers can be given as a list as e.g. in 1a,2b,3c
■ There can be several valid answers to a question

