Concepts In
Perl

Lesson 4

Tuning, Debugging and
Documenting your Code

Debugging

= Best strategy: write bug free programs

= Perl helps you with that by using
0 #Bug in perl: -w is optional
0 #forces strong(er) typing
0 Usage of CPAN Modules (usually well tested)
0 Usage of recipes from the literature (see Intro)

= |If your program nevertheless seems to have bugs
0 print out intermediate results (poor mans debugger)
0 use a real debugger

Printing Debug Data

= Simply use
= use more advanced techniques for structured data
use Dumpvalue;
my $dumper = new Dumpvalue;

print "The variable \$client type ", ref
(Sclient), " contains:\n";

Sdumper->dumpValue ($client) ;
we don't really want that:

Sdumper->dumpvars('main'); #all Variables

TMTOWTDI

There is more than one way to do it:
use Data: :Dumper;

print "The variable \$client type ", ref
(Sclient), " contains:\n", Dumper ($client) ;

= Printing can be influenced by variables
= Qutput is valid perl code

Using Code development
tools

Call a program verifier (like lint, C language)
0 perl -MO=Lint,all Ex5.pl

Produce a cross reference listing (very long!!)
0 perl -MO=Xref Ex5.pl > Ex5 references. txt

Look for more tools based on perl code generators
0 see CPAN and e.g. the Camel book 3rd edition

Using the Perl debugger

= Perl comes with its own debugger

0 call with perl -d scriptname

0 important debugger commands (mostly 1 char)
h (help) n (next) s (step) t (trace mode)
1l (1list next) v (prev) . (current line)
b (set breakpoint) c¢ (cont after break)
p expr (print) x expr (extended print)
q (quit)

0 Execute perl statements in the debugger:

Graphical debuggers

- ptkdb is graphical frontend for perl -d
0 based on perl/Tk, runs on many platforms, slow
Is a powerful debugger under UNIX
0 has also support for perl (is also a frontend)
- emacs has also some debug support
= |ntegrated development environments
0 Perlbuilder from Solutionsoft used in this course

0 colorful, with many gadgets, some minor bugs (2.09)
0 also useable for program development

Use the correct algorithms

= An extremely short wrong program
= perl -e '("a"x2000) =~ /((a+?)+)/"
= Dumps core, why?

Unsafe Data

Perl programs can get external data in many ways
0 user input from STDIN

0 Arguments passed from the command line

0 Output of external programs that gets processed
Perl marks such data as tainted and offers checks

Under Option -t perl does not transfer control to
external processes that get passed tainted data

SetUID programs will, CGI scripts should always
run under taint (-t) control

Making tainted scripts safe

= |s not a guarantee for safety within the perl code
Sline <>; #Sline is tainted
"echo $line ;#insecure, run time error with -T

= The tainted status gets cleared by

usage of regex substrings ($1, $2, ...)

calling external programs with the full path or setting SENV{ PATH}
to a known value

use of exec and system not using the shell (see above)

change an unsafe pipe into a "secure" exec
open IP, "-|" or exec 'echo', $tainted;

instead of open IP, "$tainted|";

Optimization in general

= |s optimization really required
0 If yes, time or space optimization
= Balance between optimization and readability
= Cost of optimization
0 Adding a CPU may be cheaper than manpower

11

Profiling

= Profile your program
writes profile data tmon.out
generates profiling information

(many options to influence output)
can be done in one go

= Do only optimize hotspots
0 Where most of the time is spent
0 Try to avoid excessive number of function calls

12

Benchmarking

= Benchmark your program
use Benchmark;
Scount = 100;
St = timethis (Scount, "CODE") ;
Benchmark data contained in object $t, get also printed
= For finer grained resolution and

it will replace the time calls (of 1 second resolution)

13

Optimization tips

0 look on CPAN for perl modules that do the job
0 examples: UNIX commands du, df, 1ls, ps

0 write your own modules, use the XS interface for
speed (calling C Code from perl)
0 (inline C code in perl,

similar to the XS interface, easier to handle) Installed
at DESY (UNIX)

0 Majority of modules is using XS,

Inlining C Code with
Inline.pm

use Inline C => <<'END C';
void greet () { /* define C function */
printf ("Hello, World\n");

}
END C
greet; # call C function from perl
= C function gets compiled on first invocation

(good for testing, less suitable
for stable production code)

= Subsequent script calls use compiled code

Calling Perl from C
(Inline::CPR)

/usr/local/bin/cpr
int main(void) {

printf ("Hello World, I'm running Perl %s\n",

CPR _eval ("use Config; $Config{version}")

) ;
return 0O;

}
Execution of script with cpr scriptfile

Gets compiled on first invocation or after changes
Subsequent script calls use compiled code

Compiling Perl Code

= Compiler included in distribution

= Not as useful as one could think
0 Not yet production quality
0 Mainly parsing step saved (faster startup)
0 Remaining code not much faster
0 No longer platform independent
0 If e.g. generating C resulting code hardly readable

Using Threads

Starting with 5.8 new thread model "ithreads"
0 Called Interpreter threads
0 Was avallable internally already in 5.6

Perl binary and modules containing XS get
compiled differently if threads are used

Threaded perl now standard, runs slightly slower
In threads no data are shared by default
0 Most pure perl modules therefore thread safe

threaded code harder to write, harder to debug
O timing problems, deadlocks, shared access to data

18

Threads (2)

Threads covered in a tutorial: perldoc perlthrtut

Startup penalty for threads, therefore
0 Using few long living threads is advantageous

0 Benchmark to see if the threaded program is worth the
effort

Most rules of parallel programming apply
0 Several models to use threads (e.g. master/slave)
0 Synchronization between threads (wait for the others)

19

Documenting your code

= |nline documentation is the preferred way

0 POD (plain old documentation) format is used

= Documentation is started with an empty line followed by a pod
directive, e.q.
=pod
=headl
followed by more directives and ordinary text
and ended with a blank line followed by
=cut

followed by another blank line
20

A pod example

=headl NAME

sudo - execute a command as another user

=headl SYNOPSIS

B<sudo> B<-V> | B<-h> | B<-1> | B<-1L> | B<-v> | B<-k> | B<-K> |
[BK-H>] [BL-P>] [BLK-S>] [B<K-b>] | [B<-p> I<prompt>]

[B<K-c> I<class>|I<->] [B<-a> I<auth type>]

[B<-u> I<username>|I<#uid>] I<command>

=headl DESCRIPTION

B<sudo> allows a permitted user to execute a I<command> as the
superuser or another user, as specified in the I<sudoers> file.

21

Converting pod

documentation
= Common commands for displaying and converting pod
perldoc sudo.pod # ASCII
pod2man sudo.pod | groff -man -Tps # PS
pod2html sudo.pod # HTML

= For more format conversions and options see the man
pages of the above commands and

pod2latex
pod2usage
pod2text

22

suggestions for own
Experiments

Rewrite one of the Example Scripts that it gets taint
safe, i.e. it runs under perl -T

Generate a list of all Variables using dumpvars

Check the speed of the stat function on different
platforms using the Benchmark module

Document your own perl scripts

Check your knowledge of
perl

= | prepared 20 multiple choice questions (see
attached document)

0 Try to answer them using manuals, perl, this tutorial, ...
0 Some of the choices represent frequent coding flaws

Answers to these questions can be checked by

contacting "kursserver" using the client program /
afs/ifh.de.user/f/friebel/public/kursclient

0 HTML form also available (see link to these slides)
Answers can be given as a list as e.g. in 1a,2b, 3¢

There valid to a question

