Concepts In
Perl

Lesson 3

processing the data:
functions and modules

Core Perl Functions
The Standard Perl Library

More than 250 built in functions instantly callable
described in the perlfunc man page

Much more functions in the Standard Perl Library
Organized into Modules/Packages

nearly all functions defined in the POSIX standard available
with use POSIX;

= Additionally many modules installed from CPAN see

The CPAN

Comprehensive Perl Archive network

Overview of the 5000+ Modules e.g. At
ftp://ftp.uni-hamburg.de:/pub/soft/lang/perl/ CPAN/modules/00modlist.long.html

Modules needed at DESY will be installed on request

Commands cpan (UNIX) and ppm (NT) simplify installation

faster, the overhead of spawning new processes is big
parsing the command output is worse than using an API
huge amounts of code already written and debugged
modules are usually very well maintained

Subroutines

Declaration/Definition:

Declaration (prior to Definition): sub name;

Subroutines (functions) can be called with parameters and can return a
scalar or a list

sretval = name(Parameter list);

@retlst = # name is declared

&name,; Or name (),; # if name not declared

Number or Type of Calling Parameters normally not in Definition
Correspondence of Call and Definition has to be ensured by Programmer

Definition with Prototypes possible, not covered

Subroutine examples

sub callme{ print "Sub\n"; }
sub private {
my ($parl, S$par2, $par3) = Q@ ;

print "\$parl = $parl\n";
0; # The value in the calling program remains intact

Spar2 =
1; # The value in the calling program gets overwritten

$_[0] =

return $par2;

}

callme; #defined subroutine without parameters

equivalent call: &callme(); or callme(); or &callme;

$a=33;

Sb = private $a, 44;
print "Value of \$a (parl in private) after the call: $a\n";

print "Return value of subroutine private: $b\n";

Passing Parameters

All Parameters passed in a single (Parameter) List
Subroutines see the parameter list as the array @

The array @ __ gets propagated when calling a subroutine with
the &callme; notation (no explicit parameters)

Parameters get passed by Reference
Changing elements of @ acts back to the calling program!
Separately passed arrays get flatted out in @ _
pass references to arrays instead of the arrays to avoid it
Return value is Value of the last assignment
Can be given explicitly by
or

File locking

= Two file locking mechanisms: £lock and fentl

- fentl is the OS dependent system call

0 it usually does a better job on same architecture

0 not available on all platforms

0 may be incompatible between different architectures
- flock Is always implemented

0 might use internally both the system flock or fcntl

0 might be to weak for a safe locking of files

= Better do not rely on a fool proof file locking

Exception Handling

= Simplest form of error handling is
0 Checking for return codes of programs and functions
0 reporting return codes ($?) and error messages ($!)

0 for handling abnormal situations use warn or die or
use Carp; With the functions carp or croak

= Both run and compile time errors can be catched
0 compile time errors with eval expr
O run time errors with eval { block }

The eval function
Argument of eval is regarded as perl code

0 eval expr Syntax check at run time, not possible at
compile time, as expr may be built dynamically

0 Syntax check at compile time
eval returns values like in subroutines

Errors during eval execution get trapped

0 then the return value is zero and
0 $Q contains the run or compile time error message

0 otherwise $@ is guaranteed to be empty
= Similar to try and catch from C++

Eval: An example

eval "This is not a Perl Program.";
print $@;
dynamic program generation and execution
Smyprog = 'print "3*7 yields ", 3*7, "\n"';
eval S$Smyprog;

10/$b # Division by zero

print $Q@; #or do something else

print "... and the Program goes on\n";

Access to System
Information

Group of functions that handles contents of UNIX specific
information (/etc/passwd, /etc/group etc.)

Some functions may be available on NT

Naming convention getxxx, setxxx, endxxx

Most important functions
v , , getpwent # passwd info
v , gethostbyaddr # DNS

For NT specific tasks additional Modules available
Y Win32: :AdminMisc (in Win32-AdminMisc) and
Y Win32: :NetAdmin (in libwin32)

Extracting Account
information

= The same construction as before to get only a selected

number of return values from getpwnam assigned
(Sname, uid, Sshell)=(getpwnam("friebel"))[0,2,8];
print "User S$name, uid=$uid has S$shell\n";

Loops with map and grep

= Functions map and grep implicitly perform loops
@sizes = map { -s $_} Qfiles;
IS equivalent to
for (Qfiles) { push @sizes, -s $; }

grep evaluates the Block and returns the elements
of the array for which the expression was true
@mylines = grep { /my/ } @lines;

IS equivalent to
for (Qlines) { push @mylines, $ if /my/; }

Map and grep (2)

Changing $_in map and grep changes the content of the
input array. In such cases a for loop is more readable

map and grep tend to make the code more unreadable

Typical uses of map and grep:
Use map to transform an input array into a new array
Use grep to extract elements with certain features from an array

Example: map and grep

Construct the AFS home directory path of some users
@users = qw (leich nieprask fatima friebel) ;
$prefix = "/afs/ifh.de/user/";

map array @Qusers into array @homes
Ghomes = map { Sprefix.substr($,0,1)."/$ " } Qusers;
print join("\n", Qhomes), "\n";

extract home directories containing the chars /f/
@dirs = grep { ($_ =~ m|/£f/]) } @homes;

print "Users with initial letter £:\n", join("\n",
@dirs), "\n";

Array Processing

= Functions shift,unshift,push,pop and splice
shift &Co. are special cases of splice
push/pop extend/truncate the array at the end

shift/unshift extend/truncate array at the begin
splice Array, Offset, Length, Values
splice (QARGV,0,1) ;
splice(@a,0,0,$val) ;
splice (Qa, $#a+1l,0,Sval) ;
splice(Ra,-1);

Manipulating @ARGV

= Contains the list of arguments when script is called
@ARGV = gqw(-a -bc2 filel file2);
Sparl = shift;
print "Parl: $parl, further Arguments:@ARGV\n";

unshift Q@ARGV, S$parl; # undo the shift

Slastarg = pop @ARGV;

print "Last Arg: $lastarg, further Args:Q@ARGV\n";
push @QARGV, $lastarg; # undo the pop

$filel = splice QARGV, 2, 1;

print "File Arg: $filel, further Arguments:@ARGV\n";
splice Q@ARGV, 2, 0, $filel; # undo the splice above

17

Processing Command Line
Switches

Do not code your own switch processing
Getopt::Std and Getopt::Long come with Perl

-ab 3 -d
accept options abcd, bc require a value, sets variables:
$opt _a/d, trueffalse, set Sopt b/c toa value

Getopt::Long more flexible (corresponds to GNU standard)

Time and Date

time returns the number of seconds since 1.1.1970
gmtime and localtime convert seconds into

(sec, min, h, day, mon, year, weekday, yrday, isdst)

0 mon counts from 0, year counts from 1900 i.e. Dec=11,
year 2001=101 (C library conventions)

0 weekday starts with 0 (Sunday)
= Don’t code date arithmetic yourself

0 powerful Modules Date: :Manip and TimeDate in
CPAN, installed at DESY

Date Manipulations

Use Date: :Manip;

#The Timezone processing in Windows does not work:
SENV{TZ} = 'MET';

Sdate = ParseDate("3rd Tuesday in Jan 2001");

(Syr, Smon, $day) = unpack ("A4A2A2", S$date);

print "The lesson took place at $day.Smon.Syr\n";
print "2000 was a leap year\n" if Date LeapYear (2000) ;

Context of execution

= Subroutines (and Operations in general) act in a context

= Most important contexts are scalar and list contexts

= Context is usually defined by left hand side of an assignment
= Some Operations act differently depending on Context :

$a = Q@field # left hand side is scalar, $a => S$#field
Ga = @field # LHS s anarray, @a => @field
Sdate=gmtime () ; # Thu Jan 20 10:38:17 2000
@date=gmtime(); # (17,38,10,20,0,100,4,19,0)

= Default is List Context, Scalar Context can be enforced:

print scalar gmtime(),"\n";
21

Sorting

= Function or Block With 2 ArgumemS $a and $b
= Return Value -1 (a<b),0(@a=b),1(a>Db)
= Defaultis {$a cmp $b} if no funhction provided

O alphabetic sort is achieved with {$a cmp $b}
O numeric sort is done by {$a <=> $b}

= Compact sort expresgsions often seen in programs:

The Schwartzian
Transformation

Sort function gets called proportional to n log n
times

= For costly sort functions it is better to call the

function for each element once and remember the
values: “Schwartzian Transformation”
@sorted=map{$ ->[1]}sort{$a->[0]<=>$b->[0]}
map{ [compute() ,$]} @unsorted

A Sort example

@unsortéd = qw(c=1 D=2 a=2 b=3);

#sort numerically descending, then
alphabetically ascending

@sorted = map { $ ->[0] }
sort { $b->[1] <=> $a->[1]
| |
Sa->[2] cmp Sb->[2]
} map { [$_, /=(\d+)/, uc($)1 }

@unsorted;

print "@sorted\n";

