
1

Basic
Concepts in
Perl
Lesson 3

processing the data:

functions and modules

2

Core Perl Functions
The Standard Perl Library

■ More than 250 built in functions instantly callable
■ described in the perlfunc man page

■ Much more functions in the Standard Perl Library
■ Organized into Modules/Packages
■ nearly all functions defined in the POSIX standard available

with use POSIX;

■ Additionally many modules installed from CPAN see
perldoc perllocal

3

The CPAN
■ Comprehensive Perl Archive network
■ Overview of the 5000+ Modules e.g. At

ftp://ftp.uni-hamburg.de:/pub/soft/lang/perl/CPAN/modules/00modlist.long.html

■ Modules needed at DESY will be installed on request
■ Commands cpan (UNIX) and ppm (NT) simplify installation
■ Use perl modules instead of calling system commands

◆ faster, the overhead of spawning new processes is big
◆ parsing the command output is worse than using an API
◆ huge amounts of code already written and debugged
◆ modules are usually very well maintained

4

Subroutines
■ Declaration/Definition: sub name {Statements;}

■ Declaration (prior to Definition): sub name;
■ Subroutines (functions) can be called with parameters and can return a

scalar or a list

■ $retval = name(Parameter_list);

 @retlst = name Parameter_list; # name is declared

 &name; or name(); # if name not declared

■ Number or Type of Calling Parameters normally not in Definition
Correspondence of Call and Definition has to be ensured by Programmer

■ Definition with Prototypes possible, not covered

5

Subroutine examples
sub callme{ print "Sub\n"; }

sub private {

 my ($par1, $par2, $par3) = @_;

 print "\$par1 = $par1\n";

 $par2 = 0; # The value in the calling program remains intact

 $_[0] = 1; # The value in the calling program gets overwritten

 return $par2;

}

callme; #defined subroutine without parameters

equivalent call: &callme(); or callme(); or &callme;

$a=33;

$b = private $a, 44;

print "Value of \$a (par1 in private) after the call: $a\n";

print "Return value of subroutine private: $b\n";

6

Passing Parameters
■ All Parameters passed in a single (Parameter) List
■ Subroutines see the parameter list as the array @_
■ The array @_ gets propagated when calling a subroutine with

the &callme; notation (no explicit parameters)
■ Parameters get passed by Reference

 Changing elements of @_ acts back to the calling program!

■ Separately passed arrays get flatted out in @_
pass references to arrays instead of the arrays to avoid it

■ Return value is Value of the last assignment
■ Can be given explicitly by

 return $value; or return @value;

7

File locking
■ Two file locking mechanisms: flock and fcntl
■ fcntl is the OS dependent system call

◆ it usually does a better job on same architecture
◆ not available on all platforms
◆ may be incompatible between different architectures

■ flock is always implemented
◆ might use internally both the system flock or fcntl
◆ might be to weak for a safe locking of files

■ Better do not rely on a fool proof file locking

8

Exception Handling

■ Simplest form of error handling is
◆ Checking for return codes of programs and functions
◆ reporting return codes ($?) and error messages ($!)

◆ for handling abnormal situations use warn or die or
 use Carp; with the functions carp or croak

■ Both run and compile time errors can be catched
◆ compile time errors with eval expr

◆ run time errors with eval { block }

9

The eval function
■ Argument of eval is regarded as perl code

◆ eval expr Syntax check at run time, not possible at
compile time, as expr may be built dynamically

◆ eval { block } Syntax check at compile time

■ eval returns values like in subroutines
■ Errors during eval execution get trapped

◆ then the return value is zero and
◆ $@ contains the run or compile time error message

◆ otherwise $@ is guaranteed to be empty

■ Similar to try and catch from C++

10

Eval: An example

eval "This is not a Perl Program.";

print $@;

dynamic program generation and execution

$myprog = 'print "3*7 yields ", 3*7, "\n"';

eval $myprog;

eval { 10/$b }; # Division by zero

if ($@) {

 print $@; #or do something else

}

print "... and the Program goes on\n";

11

Access to System
Information

■ Group of functions that handles contents of UNIX specific
information (/etc/passwd, /etc/group etc.)

■ Some functions may be available on NT

■ Naming convention getxxx, setxxx, endxxx
■ Most important functions

▼ getpwnam, getpwuid, getpwent # passwd info

▼ gethostbyname, gethostbyaddr # DNS
■ For NT specific tasks additional Modules available

▼ Win32::AdminMisc (in Win32-AdminMisc) and

▼ Win32::NetAdmin (in libwin32)

Access to System
Information

■ Group of functions that handles contents of UNIX specific
information (/etc/passwd, /etc/group etc.)

■ Some functions may be available on NT

■ Naming convention getxxx, setxxx, endxxx
■ Most important functions

▼ getpwnam, getpwuid, getpwent # passwd info

▼ gethostbyname, gethostbyaddr # DNS
■ For NT specific tasks additional Modules available

▼ Win32::AdminMisc (in Win32-AdminMisc) and

▼ Win32::NetAdmin (in libwin32)

12

Extracting Account
information

■ The same construction as before to get only a selected
number of return values from getpwnam assigned
($name, $uid, $shell)=(getpwnam("friebel"))[0,2,8];

print "User $name, uid=$uid has $shell\n";

13

Loops with map and grep

■ Functions map and grep implicitly perform loops
@sizes = map { -s $_ } @files;

is equivalent to

for (@files) { push @sizes, -s $_; }

■ grep evaluates the Block and returns the elements
of the array for which the expression was true
@mylines = grep { /my/ } @lines;

 is equivalent to

for (@lines) { push @mylines, $_ if /my/; }

14

Map and grep (2)

■ Changing $_ in map and grep changes the content of the
input array. In such cases a for loop is more readable

■ map and grep tend to make the code more unreadable

■ Typical uses of map and grep:
Use map to transform an input array into a new array

Use grep to extract elements with certain features from an array

15

Example: map and grep
Construct the AFS home directory path of some users

@users = qw (leich nieprask fatima friebel);

$prefix = "/afs/ifh.de/user/";

map array @users into array @homes

@homes = map { $prefix.substr($_,0,1)."/$_" } @users;

print join("\n", @homes), "\n";

extract home directories containing the chars /f/

@dirs = grep { ($_ =~ m|/f/|) } @homes;

print "Users with initial letter f:\n", join("\n",
@dirs), "\n";

16

Array Processing

■ Functions shift,unshift,push,pop and splice
■ shift &Co. are special cases of splice
■ push/pop extend/truncate the array at the end
■ shift/unshift extend/truncate array at the begin

splice Array, Offset, Length, Values
◆ shift @ARGV; splice(@ARGV,0,1);
◆ unshift @a,$val; splice(@a,0,0,$val);
◆ push @a,$val; splice(@a,$#a+1,0,$val);
◆ pop @a; splice(@a,-1);

17

Manipulating @ARGV
■ Contains the list of arguments when script is called

@ARGV = qw(-a -bc2 file1 file2);

$par1 = shift;

print "Par1: $par1, further Arguments:@ARGV\n";

unshift @ARGV, $par1; # undo the shift

$lastarg = pop @ARGV;

print "Last Arg: $lastarg, further Args:@ARGV\n";

push @ARGV, $lastarg; # undo the pop

$file1 = splice @ARGV, 2, 1;

print "File Arg: $file1, further Arguments:@ARGV\n";

splice @ARGV, 2, 0, $file1; # undo the splice above

18

Processing Command Line
Switches

■ Do not code your own switch processing
■ Getopt::Std and Getopt::Long come with Perl
use Getopt::Std;

getopts(’ab:c:d’) or Usage(); # -ab 3 -d

accept options abcd, bc require a value, sets variables:
$opt_a/d, true/false, set $opt_b/c to a value

■ Getopt::Long more flexible (corresponds to GNU standard)
use Getopt::Long;

GetOptions(Option_descriptions) or Usage();

19

Time and Date

■ time returns the number of seconds since 1.1.1970
■ gmtime and localtime convert seconds into

(sec, min, h, day, mon, year, weekday, yrday, isdst)

◆ mon counts from 0, year counts from 1900 i.e. Dec=11,
year 2001=101 (C library conventions)

◆ weekday starts with 0 (Sunday)
■ Don’t code date arithmetic yourself

◆ powerful Modules Date::Manip and TimeDate in
CPAN, installed at DESY

Submodules Date::Format and Date::Parse

20

Date Manipulations
Use Date::Manip;

#The Timezone processing in Windows does not work:

$ENV{TZ} = 'MET';

$date = ParseDate("3rd Tuesday in Jan 2001");

($yr, $mon, $day) = unpack("A4A2A2", $date);

print "The lesson took place at $day.$mon.$yr\n";

print "2000 was a leap year\n" if Date_LeapYear(2000);

21

Context of execution
■ Subroutines (and Operations in general) act in a context
■ Most important contexts are scalar and list contexts
■ Context is usually defined by left hand side of an assignment
■ Some Operations act differently depending on Context :

$a = @field # left hand side is scalar, $a => $#field

@a = @field # LHS is an array, @a => @field

$date=gmtime(); # Thu Jan 20 10:38:17 2000

@date=gmtime(); # (17,38,10,20,0,100,4,19,0)

■ Default is List Context, Scalar Context can be enforced:
print scalar gmtime(),"\n";

22

Sorting

■ sort Function_or_Block List

■ Function_or_Block with 2 Arguments $a and $b
■ Return Value -1 (a < b), 0 (a = b), 1 (a > b)
■ Default is {$a cmp $b} if no function provided

◆ alphabetic sort is achieved with {$a cmp $b}
◆ numeric sort is done by {$a <=> $b}

■ Compact sort expressions often seen in programs:
for (sort @array) { ... }

for (sort byvalue keys %hash) { ... }

do provide function byvalue

23

The Schwartzian
Transformation

■ Sort function gets called proportional to n log n
times

■ For costly sort functions it is better to call the
function for each element once and remember the
values: “Schwartzian Transformation”

@sorted=map{$_->[1]}sort{$a->[0]<=>$b->[0]}

map{[compute(),$_]} @unsorted

24

A Sort example

@unsortéd = qw(c=1 D=2 a=2 b=3);

#sort numerically descending, then
alphabetically ascending

@sorted = map { $_->[0] }

 sort { $b->[1] <=> $a->[1]

 ||

 $a->[2] cmp $b->[2]

 } map { [$_, /=(\d+)/, uc($_)] }
@unsorted;

print "@sorted\n";

