Working with
Perl modules

Lesson 4

Sending and accessing Mail

Sending Mail from Perl

Several levels of perl support possible

0 Sending mai
0 Sending mai
0 Sending mai
0 Sending mai

using sendmail

using a mail reader
with the MailTools suite
with Net::SMTP

0 Coding the SMTP protocol steps manually

Depending on the needs (speed, flexibility,
development time) the method has to be chosen

Sending mail with sendmail

= Easy to understand, similar what you would do on
the command line

0 Open a pipe to sendmaill
0 Sending the mail (headers, body) down the pipe
0 Closing the pipe
0 Done
= Disadvantages:
0 OS dependent (Windows usually without sendmail)
0 High resource usage (forking a process)

Sending with sendmail:
example

open (PIPE, "|/usr/lib/sendmail -t") or die
"sendmail open failed";

print PIPE "From: testuser\@desy.de\n";
print PIPE "To: postmaster\@desy.de\n";
print PIPE "Subject: test of service\n\n";
print PIPE <<"EOF";

Das ist ein Test

Viele Gruesse, Testuser

EOF

close PIPE or die "sendmail failure";

Sending with a mail reader

= Same procedure as with sendmail
0 Most mail readers do have delivery mode
0 Replace in the previous example sendmail by e.g.
mail
= Same drawbacks as sendmail
= Advantages

0 some clients are configured to send mail to a well
known server, not to the local sendmail

0 No need to write headers, using options instead
open P,"|mail -s 'Test' account\@desy.de"; .

Sending with Mail::Mailer

= Part of the MailTools package (installed at DESY)
= Higher level of abstraction than Net::SMTP
0 Is using Net::SMTP and libnet

0 Knows about the default mail server, if libnet configured
at install time (not done on purpose!)

= Advantages
0 Nearly as simple as sending with sendmail directly
N

0 Independent of OS specific binaries, no process forked

6

Mail::Mailer example

use Mail: :Mailer;
my $mailer = Mail::Mailer->new("smtp",
Server=> "smtp.desy.de");
Smailer->open ({From => "testuser\(@desy.de",
To => ["postmaster\@desy.de"],
Subject => "Test"});
print $mailer <<"EOF";
Das ist ein weiterer Test
EOF

Smailer->close or die "mail sending failure"; ,

Sending mail with Net::SMTP

= Apart from doing it by hand most flexible
0 Fine grained control over SMTP protocol
N

0 Only dependent on libnet module (again: no default
smtp server configured at DESY)

0 A little more verbose than Mail::Mailer
0 OS independent

Net::SMTP example

use Net::SMTP qgqw(smtp) ;
my Smailer = Net::SMTP->new("smtp.desy.de")

or die $@Q;
Smailer->mail ("testuser\@desy.de");
$Smailer->to ("postmaster\@desy.de");
Smailer->data () ;
Smailer->datasend("From: testuser\@desy.de\n");
Smailer->datasend ("To: account\@desy.de"\n\n");
Smailer->datasend("Hallo\n") ;
Smailer->dataend() ;

Smailer->quit or die "mail sending failure'":

Talking raw SMTP

Making use of modules: Net::Telnet
Works like using telnet from the command line

You need to be familiar with the SMTP commands
0 See RFC 2821

Net::Telnet not installed at DESY
0 There are other ways to do it

10

Composing a MIME message

= Several methods possible

0 MIME-tools provide mechanisms to do it

0 MIME::Lite is a bit simpler (but not installed at DESY)
= Sending MIME is usually a bad idea

0 Waste of resources

0 Mail protocol not designed to handle huge data

11

Compose script

use MIME: :Entity;

Smsg = MIME: :Entity->build(
Type=>"multipart/mixed",
From=>"somebody\@desy.de",
To=>"recipient\Q@desy.de",
Subject=>"MIME example") ;

$msg->attach (Path=>"./mime send.pl");

Smsg->attach (Data=>"Hello world!");

open MAIL, "|/usr/lib/sendmail -t";

Smsg->print (*MAIL) ;

close MAIL;

12

Accessing Mail using IMAP

For access to INBOX usage of the IMAP protocol

Access granted only after authentication
0 Authentication by LOGIN (IMAP) requires password
0 May be forbidden on unencrypted channels

0 Authentication by AUTHENTICATE requires
authentication method

AUTHENTICATE implemented with Authen::SASL
0 Free choice of method (if supported by server)
0 Tested with Kerberos4 and Kerbeross

13

Authentication to IMAP

Use of SASL can eliminate need for passwd dialog
0 Automation of INBOX related tasks possible

After authentication more IMAP commands useable
0 e.qg. fetching the headers

Auth method is being called within Mail::IMAPClient

Sample script "access inbox.pl" demonstrates this
technique

14

Sample script access_inbox.pl

use Mail: :IMAPClient;
use Authen: :SASL;
use MIME: :Base64;
make the three following vars persistent for gssapi auth
my Sgss_api_step = 0;
my ($sasl, S$conn);
my Suser = getusername () ;
my Shost = 'maill.ifh.de’';
my $imap = Mail::IMAPClient->new (

Server => Shost,

User => Suser,
) or die "couldn't connect to $host port 143: $!\n";
$imap->authenticate ('GSSAPI', \&gssapi auth)

or die "Could not authenticate:$@\n";

print "Done\n";
$imap->logout or die "Could not logout: $@\n";

exit;

access_inbox.pl (cont.)

sub getusername {
return getpwuid ($<);
}
sub gssapi_auth {
$gss_api_ step++;
if ($gss_api step == 1) {
$sasl = Authen: :SASL->new (mechanism => 'GSSAPI',
callback => { user => \&getusername }
) ;
$conn = $sasl->client new('imap', Shost);
my Smesg = Sconn->client start;
return encode_base64($mesg, "y,
} else {
my Smesg=Sconn->client step(decode base64($ [0]));

return encode base64 ($mesg, '');

16

Secure access to INBOX with
SSL

= |f Kerberos (4/5) not supported by server
0 Avoid clear text password authentication
0 Password would be transmitted unencrypted
0 Use SSL to encrypt the whole connection

= Module |O::Socket::SSL comes in handy

= Only few changes required to previous example
0 Should work according to documentation
0 Was not successful for me

17

Secure access of the INBOX

use IO: :Socket: :SSL;
use Mail: :IMAPClient;

my S$sock =IO::Socket::SSL->new (PeerAddr=>'maill.ifh.de’,

PeerPort=>'993"',
Proto=>'tcp') ;
insert here the password dialog from Lesson 1
my S$imap = Mail::IMAPClient->new (
Socket => $sock,
User => $user,
Password => S$pass
) or die "couldn't connect to Shost port 143: $'\n";

now you should set the connected state and call $imap->login

18

Access to local mail folders

Demonstration for mbox (UNIX) format
Using same package MailTools
Usually no further authentication required

Very well suited for automating some tasks
0 checking mails for spam using Spamassassin
0 displaying headers of mails (sorted e.g. by mail size)
0 extracting mail addresses

19

Access to mbox folder

use Mail:: Uil (gwmread nbox));
use Mui |l :: Header;

read from STDI N

ny $nmsgs = read _nbox('-");

ny $mails = $#$nsgs + 1;

ny $i = 0;

print "$mails mails in folder, the first 9 are\n";

for ny $nmeg (@msgs) {
last if $i++ >= 9;
my $head = new Mail :: Header ($nsQ) ;
print "$i ", $head->get (" Subject");

20

