
1

Basic
Concepts in
Perl
Lesson 1

Reading and Writing your data

2

Input and Output in Perl

■ Files are opened with open HANDLE, string
▼ STDIN, STDOUT and STDERR already open
▼ string defines what file gets opened how
"file" read only "<file" also read only

">file" write only ">>file" append to file

"+<file" open for reading and writing

■ Example:
$file = "/AUTOEXEC.BAT";
open FH, $file or die "Error opening $file: $!\n";

leaving out \n prints also the location of the error

3

Short-Circuiting the
Expression Evaluation
 no further evaluation, if truth value known
 $a && print "1"; # print only if $a true

 $a || print "2"; # print only if $a false
■ Using these shortcuts is good practice, it helps often to avoid

if/then/else constructs, the code gets more compact
■ Do not overuse this feature, use it to increase readability
■ Readability is an important design criterion

4

I/O with external Programs

"cmd|" read from cmd "|cmd" write to cmd
■ simultaneous reading and writing in Pipe not possible, but:

▼ under UNIX there are the perl functions open2/open3

▼ functions accessible after use IPC::Open2;

▼ used for interprocess communication (IPC)
▼ Queries are sent to an output pipe (to a daemon)
▼ Answers are read from input pipe (response from daemon)

5

Input Operations

■ Reading from a file with <HANDLE>
▼ in scalar context a line is returned
▼ in list context the whole file is returned in array!!!

■ To store a handle in a variable the globbing operator *
has to be used: $handle = *HANDLE;

■ $/ (InputRecordSeparator) defines what is a line!
undef $/; #whole file

$/=””; #a paragraph (up to empty line)

$/ = \num; #a record of length <=num

even multicharacter strings are allowed

6

Input Operations (2)

■ Special handle <>
▼ a.k.a. diamond operator
▼ interpret @ARGV as file names and read from there

▼ if no (more) files in @ARGV read from STDIN

■ Special handle DATA reads text after __DATA__ or
__END__ in the current (script) file

■ Reading of single chars with $c=getc HANDLE;
▼ if HANDLE omitted, read from STDIN

▼ Close files after end of I/O : close HANDLE;

7

Example: File input
DATA Stream is already open (lines after __DATA__)

{ # a new scope starts here

 local $/; # only valid in this block

$/ = "";

 $headers = <DATA>; # read all mail headers in one go

 close DATA;

 print $headers;

}

open PROG, "Ex1.pl";

$magic = getc(PROG) . getc(PROG);

close PROG;

print "Ex1.pl is a script\n" if $magic eq "#!";

8

The readline function

■ GNU readline is a library to support command line
input
▼ has command line editing, command line history
▼ several input modes (raw, hidden, cooked)

■ Not in the core of perl, but available on CPAN
▼ Term::ReadKey and Term::ReadLine
▼ installed at DESY (both UNIX and NT)

9

Programming a password
dialog

use Term::ReadKey;

*IN = *STDIN;

ReadMode 2, IN; #hidden input

print "Your Password please: ";

my $password = ReadLine 0, IN;

print "\nYour Password was $password";

ReadMode 0, IN; #normal input

close IN;

10

Reading Directories

■ works like reading of files:
opendir HANDLE, string;

 while (<HANDLE>) {

 readdir HANDLE; #$_ now contains Filename

 ...

}

#or without while: @files = readdir HANDLE;

closedir HANDLE;

■ only filenames without path information returned
■ all files (even . and ..) get returned by readdir

11

Output Operations

■ Output with print HANDLE list # no Comma!
■ Better control with printf HANDLE format,list
■ If HANDLE omitted then output to STDOUT
■ Alternatively data can be written by defining
FORMATs and use the function write (rarely used)

■ When using pipes a flush of the buffers after each
print/write can be necessary (”unbuffered”): $|=1;

12

Changing the print
functionality

■ print can be influenced by $\, $, and $"
■ Output record separator is added after each record

{ local $\="\n"; # \n gets added now

 print "no linefeed required here"; }

■ Output field separator is added after each element
 { local $,=","; #elements get separated by ,
 print "System is $^O", "did you know?\n";}

■ List separator is added after each list element in a double
quoted string

 { local $"="-"; local $\="\n"; local $,="+";
 @a=qw(1 2); print @a,"@a"; }# 1+2+1-2\n

13

Low Level I/O

■ For better control and speed, but more difficult
■ sysopen HANDLE, PATH, FLAGS, [MASK] opens files
■ read , sysread read a number of bytes (like getc)

sysopen PROG, "Ex1.pl", O_RDONLY;

$magic = sysread PROG, 2, 0;

close PROG;

print "Ex1.pl is a script\n" if $magic eq "#!";

■ syswrite write a number of bytes

■ tell/telldir get position in file/directory

■ seek/seekdir jump to position in file/directory

■ truncate the contents of a file

14

Reading compressed files
■ Compress::Zlib handles I/O with compressed files

determine current directory
for portable file name manipulation see also File::Spec
use Cwd;
use Compress::Zlib;
read a gzipped file and count the lines in there
my $file = shift;
my $lines = 0;
my $gz = gzopen($file, "rb")

 or die "Cannot open $file: $gzerrno\n" ;
while ($gz->gzreadline($_) > 0) {

$lines++;
}
die "Error reading from $file: $gzerrno" . ($gzerrno+0) . "\n"
 if $gzerrno != Z_STREAM_END ;
$gz->gzclose() ;
print "File $file contains $lines lines\n";

15

Writing compressed files

■ Compress a file with maximum compression
■ Use the same module: Compress::Zlib
■ lookup the documentation using perldoc
■ Get more info with man zlib
■ Finally find the real info in /usr/include/zlib.h (UNIX)
■ See file 01gzwrite.pl for a working script

16

Working with the Filesystem

■ Many Function equivalents of UNIX/NT Commands
▼ chdir(cd), chmod, chown(chown, chgrp)

▼ link (ln), symlink (ln -s)

▼ mkdir, rmdir, unlink (rm),
▼ utime(acts on access and modify time, does not create files)

■ Access to file information using stat, lstat, operators

$file = "Ex1.pl";

($mode, $size) = (stat $file)[2,7];

printf "File $file (length %d) has mode bits
%o\n", $size, $mode;

Result wrapped into a list

Select Elements

17

Temporary files

■ Big security hole if done improperly: The wrong way:
open (TMP, "/tmp/foo.$$") ...# seen in many places

■ To be immune to security threats the file should
▼ not reside in world writable directories
▼ not have a predictable name
▼ not already exist

■ Hackers can place a hard or symlink in places where you are
going to write. Instead of writing a temporary file you can find
yourself overwriting important data

18

Temporary files (2)
■ The correct way without File::Temp

use POSIX;
do { $name=tmpnam();
} until sysopen(TMP,$name,O_RDWR|O_CREAT|O_EXCL,0600);
do something with TMP
close TMP;
unlink $name;

■ With perl 5.6 and newer you can say
use File::Temp "tempfile";
(*TMP, $filename) = tempfile();
do something with TMP
close TMP;
unlink $filename;

19

Where to read more

■ Tutorial
▼ perldoc perlopentut

■ bidirectional communication
▼ perldoc perlipc

■ IO Layers
▼ perldoc perlIO

■ Function definitions
▼ perldoc open, sysopen, opendir, readdir, flock,

20

Questions and Answers

■ How can I read Characters from the Console without waiting
for a <ENTER>?
use Term::ReadKey;

ReadMode 4; # Turn off controls keys

while(not defined($key=ReadKey(-1))) { #get key

}

print "Got key $key\n";

ReadMode 0;

■ Are there other ways to mark an output stream for
autoflushing? (Example uses STDERR)

$oldfh=select(STDERR); $|=1; select($oldfh); or
use IO::Handle; STDERR->autoflush(1);

