
1

The Perl
programming

language

Introduction (1 lesson)

Part 1 Basic Concepts in Perl (4 lessons)

Part 2 Object orientation basics (2 lessons)

Part 3 Working with perl modules (4 lessons)

Wolfgang Friebel

DESY Zeuthen

2

3

Introduction

Perl resources

Data types

4

The Camel is commonly associated with Perl
(displayed on the cover of the O‘Reilly book “Programming Perl“)

5

Perl Slogans

■ The three big virtues of a programmer
laziness, impatience and hubris

■ There is more than one way to do it (TMTOWTDI)
Comparison of natural languages and Perl

■ Yet another perl hacker (CPAN/misc/japh)
many scripts to produce this slogan

■ Far more than you ever wanted to know series
articles by T. Christiansen (e.g. on www.perl.com)

6

Contents of the lectures
■ Part 1 Basic Concepts in Perl

▲ Reading and writing your data
▲ processing the data: regular expressions
▲ processing the data: functions and modules
▲ tuning, debugging and documenting your scripts

■ Part 2 Object orientation basics
■ Part 3 Working with perl modules

7

Perl Resources

■ Books
■ Journals, Web Sites, Newsgroups
■ Talks, Tutorials, Papers
■ Perl Software
■ Perl at your Fingertips (online manuals)
■ The Perl Installation at DESY

8

Books
■ Reference and Recipes

Programming Perl by L.Wall, T.Christiansen, R.Schwartz,
3rd edition 2000 (covers perl 5.6.0) (Camel book)

Perl Cookbook by T.Christiansen and N.Torkington (Ram book)

Effective Perl Programming by J.N.Hall and R.Schwartz

■ Beginner
Learning Perl and Learning Perl on Win32 Systems by

R.Schwartz and T.Christiansen (Llama book)

■ Advanced
Advanced Perl Programming by S.Srinivasan (Panther book)

Object Oriented Perl by D.Conway

9

Books (2)
■ Topical books

Mastering Regular Expressions by J. Friedl

Mastering Perl/Tk by S.O.Lidie/N.Walsh

How to Set Up and Maintain a Web Site by L.Stein

Programming the Perl DBI by A.Descartes and T.Bunce

Perl for System Administration by D.N.Blank-Edelman

■ Quick Refs
perl 5.8 (Vromans)

perl/Tk Version 8 (Lidie)

■ Many more books of bad and good quality
see e.g. http://www.perl.com

10

Journals, Web Sites,
Newsgroups

■ Journals
▲ The Perl Journal (TPJ) (for contents see www.tpj.com)
▲ Articles in Linux Journal, Webtechniques etc.

■ Web sites
▲ www.perl.com - the primary address for perl
▲ CPAN (Comprehensive Perl Archive Network)

ftp://ftp.uni-hamburg.de/pub/soft/lang/perl/CPAN
▲ www.northbound-train.com/perlwin32.html - for Win32

■ Newsgroups
▲ comp.lang.perl.*

11

Talks, Tutorials, Papers

■ Online Documents
(small selection from www.perl.com)
▲ Perl5 by Example (M. Medinet)
▲ Advanced topics in perl programming (Christiansen)
▲ Practical Web Site Maintenance with Perl (Klein)
▲ Perl Quick reference guide (for perl 5.004)
▲ Perl/Tk Pocket reference (for perl/Tk 4)
▲ Perl für UNIX und C-Kenner (F. Hajji, Köln 1997)

■ some docs at www.desy.de/zeuthen/~friebel/perl

12

Perl Software

■ first place to look at is CPAN (http, ftp, see above)
■ nearest site: Hamburg, many mirrors
■ source code from most examples in books

available online

13

Perl at your Fingertips
■ Version (perl -v), Installation details (perl -V)

Latest version 5.8.1, standard at DESY 5.8.0

UNIX and NT versions from same source tree
■ Online Information with man and perldoc

▲ perldoc more flexible than man
▲ perldoc perl is equivalent to man perl

▲ perldoc -f function shows function definition

▲ perldoc perllocal lists installed noncore modules

▲ perldoc -q String looks for string in “FAQ’s”

▲ perldoc DBD::mysql displays module description

▲ See also switches –h, -l, -m

14

The Perl Installation at DESY
(UNIX)

■ /usr/bin/perl and /usr/local/bin/perl do usually differ
only /usr/local/bin/perl which is a link to the (/opt)/
products/perl tree is maintained by me

■ /usr/bin/perl comes with the UNIX system
■ Current version is 5.8.0
■ Older versions (5.005, 5.6.0, 5.6.1) from /

products/perl/version/bin/perl

make perl 5.6.0 the current version with

ini perl56, switch back with ini -d perl56

15

The Perl Installation at DESY
 (NT)

■ use netinstall package for version 5.005
It contains the ActiveState port (Build 522)

■ Newer versions from http://www.activestate.com
▲ Also on ftp://ftp.ifh.de/pub/windows/perl/
▲ Plans to upgrade perl on Windows do exist

■ For program development editors with command
line editing, syntax highlighting and history are
recommended (e.g. emacs, xemacs, vim)

■ Integrated Development Environments are also
existing (PerlBuilder, CodeMagic and others)

16

Command Line Example
 perl -e 'print ”hello world!\n"' (UNIX)
 perl -e "print qq(hello world!\n)" (NT)

The -e flag requires a valid perl program as argument

Variable substitution and special character handling like \n only
within double quotes, not within single quotes

The Windows Shell does not properly treat single quotes

qq is a function (generalized double quotes)

print is also a function (does not automatically emit CR/LF)

17

Introductory Script

■ File intro.pl:
#!/usr/local/bin/perl -w #-w is your friend

#Our first example

print "What is your name?\n";

$who = <STDIN>; #read a line from STDIN

chomp $who; #see also perldoc -f chomp

print "Welcome on a $^O system, \u$who.\n"

Execution by perl intro.pl

or on UNIX simply by intro.pl if file is executable

Important constructs

Beginners can ignore that

18

Basic Syntax Rules

■ Flags on the first line are also respected under NT
■ Characters after a # up to EOL are comments
■ Commands are separated by ;
■ White Space is significant only in strings
■ Simple variables start with $, Variables with

punctuation characters are Perl Special Variables

19

Data Types

■ 3 fundamental data formats (plus pointers)
Strings, Integer, Double Precision Numbers (and Pointers)

■ Data types are built from these data formats:
Constants 123 “a” References \$abc

Variables $abc File Handles STDIN

Lists (1, 2, $abc) Formats HEADER

Arrays @abc Objects $obj

Hashes %abc Globs *glob

20

Numbers
■ no surprises (except maybe _)

▲ 123, 0755, 0x1f, 3e10, 1.5e-6, 10_000
 dec oct hex float

▲ Operations on numbers + - * / % ** ++ --

▲ Comparisons < <= > >= == != <=>

▲ Bit Operations & | ^ ~ << >>

21

Strings

■ literal Strings: ’Value: $100’
■ Strings with Variable and Backslash Interpretation:
”Welcome $who\n\\061 is octal \061\n”;

■ Backslashes (\) in interpreted Strings written as \\
▲ \ and / are interchangeable in path specifications for

the open function (but not e.g. for unlink),
open F ”C:/perl/docs”; # the same as

open F ”C:\\perl\\docs”; # this statement

22

String Operations

■ Concatenation operator . (Dot) ’abc’.’def’

■ Repetition operator x ’#’ x 70

■ String Comparisons: lt le gt ge eq ne cmp
▲$a cmp $b
▲yields -1 if $a lt $b
▲yields 0 if $a eq $b
▲yields 1 if $a gt $b

23

Long Strings (Here
Documents)

■ Long Strings with Here Documents:
$long = <<”EOF”; #or <<EOF;

Hello, $who,

Please try also ’EOF’ and `EOF`.

EOF

■ No Space between << and EOF, don‘t forget ; !!!
■ No other chars than EOF on last line !!!
■ The ’EOF’ Notation takes the text literally

■ The `EOF` Notation interprets all lines as shell
commands, which get replaced by its output

24

Sample commands with
Strings
print "=" x 70, "\n";

print <<END_OF_TEXT;

This is the $^O operating system

END_OF_TEXT

print <<`EOF2`;

dir

EOF2

25

Quotes

■ Customary

’text’ #no Interpolation

”$a\n” #Interpolation

`dir` #quoted execution

/match/#Pattern (Interpol.)

■ Generic

q[] #any delimiter

qq{} #matching braces,...

qx() #

qw() #quote words

m// #pattern match

qr() #regexp (since 5.005)

The method of choice is mostly a question of readability
Generic quotes allow nesting

26

Lists

■ Lists consist of 0..n comma delimited words
enclosed in parentheses

(1, 2, 3, ”abc”, 3.14)
quotes optional without use strict;not recommended

■ List elements can be addressed:
(1, 2, 3, abc, 3.14)[1,3]

■ Lists may be assigned to (no constants on LHS!):
($a,$b) = ($b,$a); # flip elements

■ many functions operate on lists

String or function name

27

Variables

■ no declaration required, initial value is undef
■ declaration should be enforced by use strict;

▲ Typos will be catched (uninitialized data with -w)

■ Scalar Variables
start with $, followed by the name $what

the name can contain _ and 0..9 $a_01

the name can be an expression, delimited by {}

Example: ${”wh”.”at”} is the same as $what

28

Special (scalar magic)
Variables

■ have a single non alphanum character as name
■ most important magic Variable is $_

▲ also known as default argument
▲ implicitly used in many functions, if no arg given
▲ default iterator variable in loops
▲ pattern matches/substitutions work by default on $_

▲ with <FH> input records can be placed in $_

■ have a long name if use English; was given
■ many other useful special vars, e.g $^O, $^T, $^0

29

Array Variables
■ Array Variables

Array names are preceded by a @ character
@name = (”Friebel”, ”W.”);#use notation below

@name = qw(Friebel W.); #less punctuation chars

Element count starts at Zero (more precisely at $[)

Last element of @name is $#name (-1 if empty)

Assigning to $#name changes array length !!!

■ Elements of Array Variables
preceded with $, not with @, array subscripts are enclosed in []

negative subscripts count from end of array

 $fam = $name[0]; $initial = $name[-1];

30

Special (magic) Arrays

■ name composed of capital Letters only
■ user defined Array names should not use all capital Letters
■ Most important special Arrays are @ARGV, @_ and @INC

▲ @ARGV and @_ are used for passing of Arguments

▲ @INC contains the search path for Perl Modules

31

Hashes
■ Hashes are associative Arrays
■ Hash names are preceded by a % character
■ Addressing of elements is done by strings (key)

as opposed to numbers in the case of arrays
■ Hashes can be initialized using a list

%name = (´initial´, ´W.´, ´family´, ´Friebel´);

▲ this is written more clearly using the arrow notation with
key/value pairs

▲ then the quotes around the keys can be omitted
%name = (initial => ´W.´,

 family => ´Friebel´);

32

Hash Elements

■ Elements of a hash are
preceded with $, not with %, hash subscript (key) enclosed in {}

Quotes around strings used as hash key may be omitted
$fname = $name{family};

■ Access to all Elements of Hashes
provided through the functions each, keys, values

each returns a key/value pair on each invocation

pairs are returned in an apparently random order

33

Hash Elements (2)

■ Test for the existence of a key/value
is achieved by the functions exists and defined

print ”key exists " if exists $hash{key};

print ”value defined " if defined $hash{key};

print "\n";

■ To erase a hash value assign undef to the element

$hash{key} = undef;
■ To erase a key/value pair, delete it

delete $hash{key};

34

Special (magic) Hashes

■ name composed of capital Letters only

■ Most important special Hashes are %ENV and %SIG
▲ %ENV contains the Environment Variables of the process

▲ can be read out and assigned to
▲ Assignment may change system properties

$ENV{TEMP}= ´C:/TEMP´;#System interaction

$ENV{LD_LIBRARY_PATH} = ´/usr/local/lib´;

▲ %SIG is responsible for system interrupts

35

Magic Variables Demo
$$ contains the process ID, used to create a temporary file name

$tmpfile = "\\temp\\perlwf.$$"; #System dependent and insecure

For a better solution see perldoc File::Spec

$infile = ”Intro.pl";

$! Contains the system error message in case of an open failure

open IN, $infile or die "$infile: $!\n"; #no parens around open, || not o.k.

open (OUT, ">$tmpfile") || die "$tmpfile: $!\n";

while (<IN>) {

The file is read line by line into $_

 print OUT $_;

Print a dot every ten lines

 print "." if $. % 10 == 0;

}

$. Is reset after the close command, therefore use it before

 ###

print "\n$. lines copied to $tmpfile\n";

close IN;

close OUT;

Remove the copied file

unlink $tmpfile;

36

Visibility of Variables
(Scopes)

■ By default all variables are global (in package main)
 $a is identical to $main::a

 therefore also visible in all blocks and subroutines

■ Default Package name can be changed (see later)
■ Values of global Variables can be hidden
 local $a# valid in Block, Subroutine, File, eval

 Variable gets new value within current scope, old value is
restored automatically when scope is left

 for magic Variables the only mechanism to limit visibility

37

Lexical Variables using my

■ Definition of lexical Variables with my
■ Lexical Variables only visible in current block, while

global and local variables still visible in subroutines
■ Variables declared with my truly local (private)
 my $a = 1; my ($b, $c); my %hash;

■ Analogy to auto Variables in C
■ Preference of my over local is good practice(faster

and safer)

38

The our keyword
■ New with perl 5.6
■ Perl can restrict the use of global variables

use strict;

■ Prior to perl 5.6 global variables had then either to
be fully qualified, e.g. $main::debug or be
predeclared with
use strict vars ($var1, $var2, ...);

■ With perl 5.6 this construction becomes
our ($var1, $var2, ...);

39

Local and lexical variables
$a = 1;

{ # a new block

 local $a;

 $a = 2;

} # here $a is reset to 1

{ my $bb;

 $bb = 1;

} # from here on $bb cannot be accessed anymore

Usage of private copies of arguments in a subroutine

sub private {

 my ($par1, $par2, $par3) = @_;

 print "\$par1 = $par1\n";

 $par1 = 0; # The value in the calling program remains intact

 $_[0] = 1; # The value in the calling program gets overwritten

}

40

41

Questions and Answers

■ Where can I learn more about special characters?
Answers are in perldoc perlop, chapter ‘quote and quote-like ...‘

The special chars \n \t \e \033 \x1b \u and \l are more frequently used

■ Which function ist the equivalent of ” ” and ’ ’?
Answers are in perldoc perlop, chapter ‘quote and quote-like ...‘

■ What is the Value of ”\n” in Windows?
It is equivalent to the two chars <CR><LF>

■ What are the operators that do bitwise arithmetic?
& | ^ ~ (and, or, xor, not)

42

Questions and Answers (2)
■ Where can I learn more about magic Variables?

Look into perldoc perlvar
$_ $| $. $? $! $$ $< $0 $& $` $’ @ARGV @INC and %ENV

are found in many programs

■ What is the purpose of the functions defined and
undef?
Try perldoc -f defined and perldoc -f undef

 if (defined $a) ... if (defined &sub) ...

 undef $a; undef %h; undef ⊂ $a = undef;

