Mathematical Structures in Massive Operator Matrix Elements and Wilson Coefficients

Scattering Amplitudes across Germany, Akademiezentrum Raitenhaslach, Germany
Johannes Blümlein, DESY² | July, 25-28, 2023

- A. Behring, J.B., and K. Schönwald, The inverse Mellin transform via analytic continuation, JHEP 06 (2023) 62.
- J. Ablinger et al., The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements $A_{g g}^{(3)}$ and $\Delta A_{g g}^{(3)}$, JHEP 12 (2022) 134.
In collaboration with:
J. Ablinger, A. Behring, A. De Freitas, A. Goedicke, A. von Manteuffel, C. Schneider, K. Schönwald

[^0]
Outline

(1) Introduction

- Factorization of the Structure Functions
- Mathematical Structure of Feynman Integrals
(2) Solutions in Mellin Space
(3) Inverse Mellin transform via analytic continuation
- Harmonic polylogarithms
- Cyclotomic harmonic polylogarithms
- Generalized harmonic polylogarithms
- Square root valued alphabets
- Iterative non-iterative Integrals
- Iterating on ${ }_{2} F_{1}$ solutions

4. The massive OME $A_{g g, Q}^{(3)}$

- Binomial Sums
- Small and large x limits
- Numerical results
(5) Conclusions

Unpolarized Deep-Inelastic Scattering (DIS):

Structure Functions: $F_{2, L}$ contain light and heavy quark contributions.
At 3-Loop order also graphs with two heavy quarks of different mass contribute.
\Longrightarrow Single and 2-mass contributions: c and b quarks in one graph.

Factorization of the Structure Functions

At leading twist the structure functions factorize in terms of a Mellin convolution

$$
F_{(2, L)}\left(x, Q^{2}\right)=\sum_{j} \underbrace{\mathbb{C}_{j,(2, L)}\left(x, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)}_{\text {perturbative }} \otimes \underbrace{f_{j}\left(x, \mu^{2}\right)}_{\text {nonpert. }}
$$

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
\otimes denotes the Mellin convolution

$$
f(x) \otimes g(x) \equiv \int_{0}^{1} d y \int_{0}^{1} d z \delta(x-y z) f(y) g(z)
$$

The subsequent calculations are performed in Mellin space, where \otimes reduces to a multiplication, due to the Mellin transformation

$$
\hat{f}(N)=\int_{0}^{1} d x x^{N-1} f(x)
$$

Wilson coefficients:

$$
\mathbb{C}_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)=C_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}\right)+H_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right) .
$$

At $Q^{2} \gg m^{2}$ the heavy flavor part

$$
H_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)=\sum_{i} C_{i,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}\right) A_{i j}\left(\frac{m^{2}}{\mu^{2}}, N\right)
$$

[Buza, Matiounine, Smith, van Neerven 1996]
factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements (OMEs) of local operators O_{i} between partonic states j

$$
A_{i j}\left(\frac{m^{2}}{\mu^{2}}, N\right)=\langle j| O_{i}|j\rangle
$$

\rightarrow additional Feynman rules with local operator insertions for partonic matrix elements.
The unpolarized light flavor Wilson coefficients are known up to NNLO [Moch, Vermaseren, Vogt, 2005; JB,
Marquard, Schneider, Schönwald, 2022].
For $F_{2}\left(x, Q^{2}\right):$ at $Q^{2} \gtrsim 10 m^{2}$ the asymptotic representation holds at the 1% level.

Introduction

- Massive OMEs allow to describe the massive DIS Wilson coefficients for $Q^{2} \gg m_{Q}^{2}$.
- Furthermore, they form the transition elements in the variable flavor number scheme (VFNS).
- The current state of art is 3 -loop order, including two-mass corrections, because m_{c} / m_{b} is not small.
- After having calculated a series of moments in 2009 I. Bierenbaum, JB, S. Klein, Nucl. Phys B 820 (2009) 417, we started to calculate all OMEs for general values of the Mellin variable N.
- There are the following massive OMEs: $A_{q q, Q}^{\mathrm{NS}}, A_{q g, Q}, A_{q q, Q}^{\mathrm{PS}}, A_{g q, Q}, A_{Q q}^{\mathrm{PS}}, A_{g g, Q}, A_{Q g}$.
- To 2-loop order $A_{q q, Q}^{\mathrm{NS}}, A_{Q q}^{\mathrm{PS}}, A_{Q g}$, [2007] $A_{g q, Q}, A_{g g, Q}$ [2009] contribute. These quantities are represented by harmonic sums resp. harmonic polylogarithms. [Older work by van Neerven, et al.]
- The 3-loop contributions of $O\left(N_{F}\right)$ [2010] to all OMEs and the $A_{q q, Q}^{\mathrm{NS}}, A_{q g, Q}, A_{g q, Q}, A_{q q, Q}^{\mathrm{PS}}[2014]$ are also given by harmonic sums only. [Also all logarithmic terms of all OMEs.]
- For $A_{Q q}^{\mathrm{PS}}[2014]$ also generalized harmonic sums are necessary.
- $A_{g g, Q}[2022]$ requires finite binomial sums.
- Finally, $A_{Q g}$ depends also on ${ }_{2} F_{1}$-solutions [2017] (or modular forms).
- In the two-mass case to 3-loop order $A_{q q, Q}^{\mathrm{NS}}, A_{q g, Q}, A_{q q, Q}^{\mathrm{PS}}, A_{Q q}^{\mathrm{PS}}, A_{g q, Q}, A_{g g, Q}$ [2017-2020] can be solved analytically due to 1 st order factorization of the respective differential equations. The solution for $A_{Q g}$ is by far more involved.

Introduction

- Also the corresponding quantities in the polarized case were calculated.
- A very long tale:

42 physics and 27 algorithmic and mathematical journal/book publications so far.

- All solved cases up to now could be calculated in the single mass case in Mellin space.
- In the two-mass PS-case one has to refer to x space, because in Mellin space there is no 1 st order factorization.
- Massless 3-loop calculations: anomalous dimensions and Wilson coefficients (unpolarized/polarized), JB, P. Marquard, C. Schneider, K. Schönwald, Nucl. Phys B 971 (2021) 115542, JHEP 01 (2022) 193, Nucl. Phys. B 980 (2022) 115794, JHEP 11 (2022) 156 (extending and confirming earlier work by Moch, Vermaseren and Vogt, [2004,2005,2014])
- massive QED applications: JB, A. De Freitas, C. Raab, K. Schönwald, W.L. van Neerven, 2011, 2019/21.
- $A_{g g, Q}$: Also here one diagram is better computed in x-space first.
- $A_{Q g}$: ongoing: ${ }_{2} F_{1}$ contributions; not yet implemented in N-space algorithms.
- Very large recurrences can be computed. However, their factorization beyond the first order factors is still not possible.
- Therefore, we will deal with the ${ }_{2} F_{1}$-dependent master integrals in x space first.
- How to go from N-space to x-space analytically ?

Introduction	Solutions in Mellin Space	Inverse Mellin transform via analytic continuation	Conclusions
000000	00	000000000000	00
Johannes Blümlein, DESY ${ }^{8}$	Mathematical Structures in Massive Operator Matrix Elements and Wilson Coefficients	00000000000	The

Mathematical Structure of Feynman Integrals

- 1998: Harmonic Sums [Vermaseren; JB]. At this time Nielsen integrals were exhausted and something new had to be done for single scale quantities.

A new era in QFT started.

- 1997 More was known (or claimed to be) on numbers [zero scale quantities] [Broadhurst, Kreimer]
- 1999: Harmonic Polylogarithms [Remiddi, Vermaseren]
- 2000, 2003, 2009: Analytic continuation of harmonic sums, systematic algebraic reduction; structural relations [JB]
- 1999,2001: Generalized Harmonic Sums [Borwein, Bradley, Broadhurst, Lisonek], [Moch, Uwer, Weinzierl]
- 2004: Infinite harmonic (inverse) binomial sums [Davydychev, Kalmykov; Weinzierl]
- 2009: MZV data mine [JB, Broadhurst, Vermaseren]
- 2011: (generalized) Cyclotomic Harmonic Sums, polylogarithms and numbers [Ablinger, JB, Schneider]
- 2013: Systematic Theory of Generalized Harmonic Sums, polylogarithms and numbers [Ablinger, JB, Schneider]
- 2014: Finite nested Generalized Cyclotomic Harmonic Sums with (inverse) Binomial Weights [Ablinger, JB, Raab, Schneider]
- 2014-: Elliptic integrals with (involved) rational arguments.
- now: More-scale problem: Kummer-elliptic integrals

Particle Physics Generates NEW Mathematics \& steadily needs new methods from Mathematics.

Function Spaces

Sums
Harmonic Sums
$\sum_{k=1}^{N} \frac{1}{k} \sum_{l=1}^{k} \frac{(-1)^{l}}{\beta^{3}}$
gen. Harmonic Sums

$$
\sum_{k=1}^{N} \frac{(1 / 2)^{k}}{k} \sum_{l=1}^{k} \frac{(-1)^{l}}{\beta^{3}}
$$

Cycl. Harmonic Sums
$\sum_{k=1}^{N} \frac{1}{(2 k+1)} \sum_{l=1}^{k} \frac{(-1)^{l}}{\beta^{3}}$
Binomial Sums
$\sum_{k=1}^{N} \frac{1}{k^{2}}\binom{2 k}{k}(-1)^{k}$
$\int_{0}^{x} \frac{d y}{y} \int_{0}^{y} \frac{d z}{z \sqrt{1+z}}$
iterated integrals on ${ }_{2} F_{1}$ functions

$$
\int_{0}^{z} d x \frac{\ln (x)}{1+x}{ }_{2} F_{1}\left[\begin{array}{c}
\frac{4}{3}, \frac{5}{3} \\
2
\end{array} ; \frac{x^{2}\left(x^{2}-9\right)^{2}}{\left(x^{2}+3\right)^{3}}\right]
$$

Special Numbers
multiple zeta values

$$
\int_{0}^{1} d x \frac{\mathrm{Li}_{3}(x)}{1+x}=-2 \mathrm{Li}_{4}(1 / 2)+\ldots
$$

gen. multiple zeta values
$\int_{0}^{1} d x \frac{\ln (x+2)}{x-3 / 2}=\operatorname{Li}_{2}(1 / 3)+\ldots$
cycl. multiple zeta values
$\mathbf{C}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}}$
associated numbers
$\mathrm{H}_{8, w_{3}}=2 \operatorname{arccot}(\sqrt{7})^{2}$
associated numbers
$\int_{0}^{1} d x_{2} F_{1}\left[\begin{array}{c}\frac{4}{3}, \frac{5}{3} \\ 2\end{array} ; \frac{x^{2}\left(x^{2}-9\right)^{2}}{\left(x^{2}+3\right)^{3}}\right]$

shuffle, stuffle, and various structural relations \Longrightarrow algebras

Except the last line integrals, all other ones stem from 1st order factorizable equations \Longrightarrow modular forms.

Principal computation steps

Chains of packages are used to perform the calculation:

- QGRAF, Nogueira, 1993 Diagram generation
- FORM, Vermaseren, 2001; Tentyukov, Vermaseren, 2010 Lorentz algebra
- Color, van Ritbergen, Schellekens and Vermaseren, 1999 Color algebra
- Reduze 2 Studerus, von Manteuffel, 2009/12, Crusher, Marquard, Seidel IBPs
- Method of arbitrary high moments, JB, Schneider, 2017 Computing large numbers of Mellin moments
- Guess, Kauers et al. 2009/2015; JB, Kauers, Schneider, 2009 Computing the recurrences
- Sigma, EvaluateMultiSums, SolveCoupledSystems, Schneider, 2007/14 Solving the recurrences
- OreSys, Zürcher, 1994; Gerhold, 2002; Bostan et al., 2013 Decoupling differential and difference equations
- Diffeq, Ablinger et al, 2015, JB, Marquard, Rana, Schneider, 2018 Solving differential equations
- HarmoncisSums, Ablinger and Ablinger et al. 2010-2019 Simplifying nested sums and iterated integrals to basic building blocks, performing series and asymptotic expansions, Almkvist-Zeilberger algorithm etc.

Solutions in Mellin Space

- Use IBP relations to obtain large sets of Mellin moments JB, Schneider, 2017
- Compute the corresponding recurrences for all color- ζ factors.
- Solve all 1st order factorizing cases by using the package Sigma.
- Inverse Mellin transform by using the tools of the package HarmonicSums.
- Numerical implementations in N - and x space.
- Remaining: Non-first order factorizable cases.
- $A_{Q g}^{(3)}$: color coefficients $\propto T_{F}^{2}: 8000$ moments allow to get all recurrences.
- $A_{Q q}^{(3)}$: color coefficients $\propto T_{F} \zeta_{3}$: 15000 moments allow to get all recurrences.
- Many more moments needed to obtain the recurrences for the rational terms $\propto T_{F}$.
- the solutions for $\propto T_{F}^{2}$ and $\propto T_{F}^{2} \zeta_{3}$ each do diverge for $N \rightarrow \infty$, while their sum converges to 0 .
- Observe the dynamical creation of a ζ_{3} term in the large N limit.
- One may try to compute the asymptotic behaviour of these recurrences, but this needs much more work.
- Usually it is important here to know the associated x space solution.
- More work is needed here.

Introduction 0000000	Solutions in Mellin Space	Inverse Mellin transform via analytic continuation 000000000000	The massive OME $A^{(3)}$ $00000000000^{g g, Q}$	Conclusions 00
Johannes Blüml	thematical Structures in	trix Elements and Wilson Coefficients	July, 25-28, 2023	11/37

Conjugation

$$
\begin{gathered}
f_{2}(N, \varepsilon) \equiv f_{1}^{C}(N, \varepsilon)=-\sum_{k=0}^{N}(-1)^{k}\binom{N}{k} f_{1}(k, \varepsilon) \\
\left.\tilde{f}_{1}^{C}(x, \varepsilon)=-\tilde{f}_{1}(1-x), x \in\right] 0,1[.
\end{gathered}
$$

Example: Vermaseren, 1998

$$
\begin{gathered}
S_{1}^{C}(N)=\frac{1}{N} \\
\left(-\frac{1}{1-x}\right)^{C}=\frac{1}{x}
\end{gathered}
$$

- Relates many master integrals, which need not to be calculated individually.
- Can be easily traced by inspecting their (known) Mellin moments.
- Holds for general ε.
- Saves us one ${ }_{2} F_{1}$ dependent 3×3 system, since conjugation holds irrespectively of 1 st order factorization.

Inverse Mellin transform via analytic continuation: $a_{Q g}^{(3)}$

Resumming Mellin N into a continuous variable t, observing crossing relations. Ablinger et al. 2014
$\sum_{k=0}^{\infty} t^{k}(\Delta \cdot p)^{k} \frac{1}{2}\left[1 \pm(-1)^{k}\right]=\frac{1}{2}\left[\frac{1}{1-t \Delta \cdot p} \pm \frac{1}{1+t \Delta \cdot p}\right]$
$\mathfrak{A}=\left\{f_{1}(t), \ldots, f_{m}(t)\right\}, \quad \mathrm{G}(b, \vec{a} ; t)=\int_{0}^{t} d x_{1} f_{b}\left(x_{1}\right) \mathrm{G}\left(\vec{a} ; x_{1}\right), \quad\left[\frac{d}{d t} \frac{1}{f_{a_{k-1}}(t)} \frac{d}{d t} \cdots \frac{1}{f_{a_{1}}(t)} \frac{d}{d t}\right] \mathrm{G}(\vec{a} ; t)=f_{a_{k}}(t)$.
Regularization for $t \rightarrow 0$ needed.

$$
\begin{align*}
F(N) & =\int_{0}^{1} d x x^{N-1}\left[f(x)+(-1)^{N-1} g(x)\right] \\
\tilde{F}(t) & =\sum_{N=1}^{\infty} t^{N} F(N) \\
f(x)+(-1)^{N-1} g(x) & =\frac{1}{2 \pi i}\left[\operatorname{Disc}_{x} \tilde{F}\left(\frac{1}{x}\right)+(-1)^{N-1} \operatorname{Disc}_{x} \tilde{F}\left(-\frac{1}{x}\right)\right] \tag{1}
\end{align*}
$$

t-space is still Mellin space. One needs closed expressions to perform the analytic continuation (1).
Continuation is needed to calculate the small x behaviour analytically.

Harmonic polylogarithms

$$
\begin{gathered}
\mathfrak{A}_{\mathrm{HPL}}=\left\{f_{0}, f_{1}, f_{-1}\right\}\left\{\frac{1}{t}, \frac{1}{1-t}, \frac{1}{1+t}\right\} \\
\mathrm{H}_{b, \overrightarrow{\mathrm{a}}}(x)=\int_{0}^{x} d y f_{b}(y) \mathrm{H}_{\vec{a}}(y), f_{c} \in \mathfrak{A}_{\mathrm{HPL}}, \mathrm{H}_{\underbrace{0 \ldots, \ldots}_{k}}(x):=\frac{1}{k!} \ln ^{k}(x) .
\end{gathered}
$$

A finite monodromy at $x=1$ requires at least one letter $f_{1}(t)$.
Example:

$$
\begin{gathered}
\tilde{F}_{1}(t)=\mathrm{H}_{0,0,1}(t) \\
F_{1}(x)=\frac{1}{2} \mathrm{H}_{0}^{2}(x) \\
\mathbf{M}\left[F_{1}(x)\right](n-1)=\frac{1}{n^{3}} \\
\tilde{F}_{1}(t)=t+\frac{t^{2}}{8}+\frac{t^{3}}{27}+\frac{t^{4}}{64}+\frac{t^{5}}{125}+\frac{t^{6}}{216}+\frac{t^{7}}{343}+\frac{t^{8}}{512}+\frac{t^{9}}{729}+\frac{t^{10}}{1000}+O\left(t^{11}\right)
\end{gathered}
$$

Cyclotomic harmonic polylogarithms

Also here the index set has to contain $f_{ \pm} 1(t)$.
$\mathfrak{A}_{\mathrm{cycl}}=\left\{\frac{1}{x}\right\} \cup\left\{\frac{1}{1-x}, \frac{1}{1+x}, \frac{1}{1+x+x^{2}}, \frac{x}{1+x+x^{2}} \frac{1}{1+x^{2}}, \frac{x}{1+x^{2}}, \frac{1}{1-x+x^{2}}, \frac{x}{1-x+x^{2}}, \ldots\right\}$.
Example:

$$
\begin{aligned}
\tilde{F}_{3}(t) & =\frac{1}{3(1-t) t^{1 / 3}} \mathrm{G}\left[\frac{\xi^{1 / 3}}{1-\xi} ; t\right] \\
& =\frac{1}{1-t}\left(-1+\frac{t^{-1 / 3}}{3}\left(\mathrm{H}_{1}\left(t^{1 / 3}\right)+2 \mathrm{H}_{\{3,0\}}\left(t^{1 / 3}\right)+\mathrm{H}_{\{3,1\}}\left(t^{1 / 3}\right)\right)\right) \\
F_{3}(x)= & -\frac{1}{3}\left[\frac{1}{1-x}\right]_{+}+\frac{1}{18}[\sqrt{3} \pi+9(-2+\ln (3))] \delta(1-x)+\frac{1-x^{4 / 3}}{3(1-x)}
\end{aligned}
$$

Generalized harmonic polylogarithms

$$
\begin{gathered}
\mathfrak{A}_{\mathrm{gHPL}}=\left\{\frac{1}{x-a}\right\}, a \in \mathbb{C} \\
F_{5}(x)=\frac{1}{\pi} \operatorname{lm} \frac{t}{t-1}\left[\mathrm{H}_{0,0,0,1}(t)+2 \mathrm{G}\left(\gamma_{1}, 0,0,1 ; t\right)\right]=-\frac{1}{1-x}\left\{\theta (1 - x) \left[\frac{1}{24}\left(4 \ln ^{3}(2)-2 \ln (2) \pi^{2}+21 \zeta_{3}\right)\right.\right. \\
\left.\left.-\mathrm{H}_{2,0,0}(x)\right]-\theta(2-x) \frac{1}{24}\left(4 \ln ^{3}(2)-2 \ln (2) \pi^{2}+21 \zeta_{3}\right)\right\}
\end{gathered}
$$

In intermediary steps Heaviside functions occur and the support of the x-space functions is here [0,2].

$$
\begin{gathered}
\tilde{\mathbf{M}}_{a}^{+, b}[g(x)](N)=\int_{0}^{a} d x\left(x^{N}-b^{N}\right) f(x), \quad a, b \in \mathbb{R} \\
\tilde{\mathbf{M}}_{2}^{+, 1}\left[F_{5}(x)\right](N)=-S_{1,3}\left(2, \frac{1}{2}\right)(N-1) \\
S_{b, \vec{a}}(c, \vec{d})(N)=\sum_{k=1}^{N} \frac{c^{k}}{k^{b}} S_{\vec{a}}(\vec{d})(k), \quad b, a_{i} \in \mathbb{N} \backslash\{0\}, \quad c, d_{i} \in \mathbb{C} \backslash\{0\} .
\end{gathered}
$$

Square root valued alphabets

$$
\begin{aligned}
\mathfrak{A}_{\mathrm{sqrt}} & =\left\{f_{4}, f_{5}, f_{6} \ldots\right\} \\
& =\left\{\frac{\sqrt{1-x}}{x}, \sqrt{x(1-x)}, \frac{1}{\sqrt{1-x}}, \frac{1}{\sqrt{x} \sqrt{1 \pm x}}, \frac{1}{x \sqrt{1 \pm x}}, \frac{1}{\sqrt{1 \pm x} \sqrt{2 \pm x}}, \frac{1}{x \sqrt{1 \pm x / 4}}, \ldots\right\},
\end{aligned}
$$

Monodromy also through:

$$
\begin{aligned}
&(1-t)^{\alpha}, \quad \alpha \in \mathbb{R}, \\
& F_{7}(x)= \frac{1}{\pi} \operatorname{lm} \frac{1}{t} \mathrm{G}\left(4 ; \frac{1}{t}\right)=1-\frac{2(1-x)(1+2 x)}{\pi} \sqrt{\frac{1-x}{x}}-\frac{8}{\pi} \mathrm{G}(5 ; x), \\
& F_{8}(x)= \frac{1}{\pi} \operatorname{lm} \frac{1}{t} \mathrm{G}\left(4,2 ; \frac{1}{t}\right)=-\frac{1}{\pi}\left[4 \frac{(1-x)^{3 / 2}}{\sqrt{x}}+2(1-x)(1+2 x) \sqrt{\frac{1-x}{x}}\left[\mathrm{H}_{0}(x)+\mathrm{H}_{1}(x)\right]\right. \\
&+8[\mathrm{G}(5,2 ; x)+\mathrm{G}(5,1 ; x)],
\end{aligned}
$$

Iterative non-iterative Integrals

- Master integrals, solving differential equations not factorizing to 1 st order
- ${ }_{2} F_{1}$ solutions Ablinger et al. [2017]
- Mapping to complete elliptic integrals: duplication of the higher transcendental letters.
- Complete elliptic integrals, modular forms Sabry, Broadhurst, Weinzierl, Remiddi, Tancredi, Duhr, Broedel et al. and many more
- Abel integrals
- K3 surfaces Brown, Schnetz [2012]
- Calabi-Yau motives Klemm, Duhr, Weinzierl et al. [2022]

Refer to as few as possible higher transcendental functions, the properties of which are known in full detail.

- $A_{Q q}^{(3)}$: effectively only one 3×3 system of this kind.
- The system is connected to that occurring in the case of ρ parameter. Ablinger et al. [2017], JB et al. [2018], Abreu et al. [2019]
- Most simple solution: two ${ }_{2} F_{1}$ functions.

Iterative non-iterative Integrals

$$
\frac{d}{d t}\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t) \\
F_{3}(t)
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{t} & -\frac{1}{1-t} & 0 \\
0 & -\frac{1}{t(1-t)} & -\frac{2}{1-t} \\
0 & \frac{2}{t(8+t)} & \frac{1}{8+t}
\end{array}\right]\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t) \\
F_{3}(t)
\end{array}\right]+\left[\begin{array}{l}
R_{1}(t, \varepsilon) \\
R_{2}(t, \varepsilon) \\
R_{3}(t, \varepsilon)
\end{array}\right]+O(\varepsilon),
$$

It is very important to which function $F_{i}(t)$ the system is decoupled.

Iterative non-iterative Integrals

- Decoupling for F_{1} first leads to a very involved solution: ${ }_{2} F_{1}$-terms seemingly enter at $O(1 / \varepsilon)$ already.
- However, these terms are actually not there.
- Furthermore, there is also a singularity at $x=1 / 4$.
- All this can be seen, when decoupling for F_{3} first.

Homogeneous solutions:

$$
\begin{gathered}
F_{3}^{\prime}(t)+\frac{1}{t} F_{3}(t)=0, \quad g_{0}=\frac{1}{t} \\
F_{1}^{\prime \prime}(t)+\frac{(2-t)}{(1-t) t} F_{1}^{\prime}(t)+\frac{2+t}{(1-t) t(8+t)} F_{1}(t)=0,
\end{gathered}
$$

with

$$
\begin{aligned}
& g_{1}(t)=\frac{2}{(1-t)^{2 / 3}(8+t)^{1 / 3}}{ }^{2} F_{1}\left[\begin{array}{c}
\frac{1}{3}, \frac{4}{3} \\
2
\end{array}-\frac{27 t}{(1-t)^{2}(8+t)}\right], \\
& g_{2}(t)=\frac{2}{(1-t)^{2 / 3}(8+t)^{1 / 3}}{ }^{2} F_{1}\left[\begin{array}{c}
\frac{1}{3}, \frac{4}{3} \\
\frac{2}{3}
\end{array} 1+\frac{27 t}{(1-t)^{2}(8+t)}\right],
\end{aligned}
$$

Iterative non-iterative Integrals

Alphabet:

$$
\begin{aligned}
\mathfrak{A}_{2}= & \left\{\frac{1}{t}, \frac{1}{1-t}, \frac{1}{8+t}, g_{1}, g_{2}, \frac{g_{1}}{t}, \frac{g_{1}}{1-t}, \frac{g_{1}}{8+t}, \frac{g_{1}^{\prime}}{t}, \frac{g_{1}^{\prime}}{1-t}, \frac{g_{1}^{\prime}}{8+t}, \frac{g_{2}}{t}, \frac{g_{2}}{1-t}, \frac{g_{2}}{8+t}, \frac{g_{2}^{\prime}}{t}, \frac{g_{2}^{\prime}}{1-t},\right. \\
& \left.\frac{g_{2}^{\prime}}{8+t}, t g_{1}, t g_{2}\right\} \\
F_{1}(t)= & \frac{8}{\varepsilon^{3}}\left[1+\frac{1}{t} \mathrm{H}_{1}(t)\right]-\frac{1}{\varepsilon^{2}}\left[\frac{1}{6}(106+t)+\frac{(9+2 t)}{t} \mathrm{H}_{1}(t)+\frac{4}{t} \mathrm{H}_{0,1}(t)\right] \\
& +\frac{1}{\varepsilon}\left\{\frac{1}{12}(271+9 t)+\left[\frac{71+32 t+2 t^{2}}{12 t}+\frac{3 \zeta_{2}}{t}\right] \mathrm{H}_{1}(t)+\frac{(9+2 t)}{2 t} \mathrm{H}_{0,1}(t)+\frac{2}{t} \mathrm{H}_{0,0,1}(t)\right. \\
& \left.+3 \zeta_{2}\right\}+\frac{1}{t}\left\{\frac{6696-22680 t-16278 t^{2}-255 t^{3}-62 t^{4}}{864 t}+\left(9+9 t+t^{2}\right) g_{1}(t)\left[\frac{31 \ln (2)}{16}\right.\right. \\
& \left.+\frac{1}{144}(265+31 \pi(-3 i+\sqrt{3}))+\frac{3}{8} \ln (2) \zeta_{2}+\frac{1}{24}(10+\pi(-3 i+\sqrt{3})) \zeta_{2}-\frac{7}{4} \zeta_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{G}(18, t)\left[-\frac{93 \ln (2)}{16}+\frac{1}{48}(-265-31 \pi(-3 i+\sqrt{3}))+\left(-\frac{9 \ln (2)}{8}\right.\right. \\
& \left.\left.+\frac{1}{8}(-10-\pi(-3 i+\sqrt{3}))\right) \zeta_{2}+\frac{21}{4} \zeta_{3}\right] \ldots \\
& +\frac{5}{2}[\mathrm{G}(4,14,1,2 ; t)-\mathrm{G}(5,8,1,2 ; t)]+\frac{1}{4}[\mathrm{G}(13,8,1,2 ; t)-\mathrm{G}(7,14,1,2 ; t)] \\
& \left.+\frac{9}{4}[\mathrm{G}(10,14,1,2 ; t)-\mathrm{G}(16,8,1,2 ; t)]+\frac{3}{4}[\mathrm{G}(19,14,1,2 ; t)-\mathrm{G}(19,8,1,2 ; t)]\right\}+\mathrm{O}(\varepsilon), \\
F_{2}(t)= & \frac{8}{\varepsilon^{3}}+\frac{1}{\varepsilon^{2}}\left[-\frac{1}{3}(34+t)+\frac{2(1-t)}{t} \mathrm{H}_{1}(t)\right]+\frac{1}{\varepsilon}\left[\frac{116+15 t}{12}+3 \zeta_{2}-\frac{(1-t)(8+t)}{3 t} \mathrm{H}_{1}(t)\right. \\
& \left.-\frac{1-t}{t} \mathrm{H}_{0,1}(t)\right]+\frac{992-368 t+75 t^{2}-27 t^{3}}{144 t}+(1-t)\left(\frac{\left(43+10 t+t^{2}\right)}{12 t} \mathrm{H}_{1}(t)+\frac{(4-t)}{4 t}\right. \\
& \left.\times \mathrm{H}_{0,1}(t)+\frac{3 \zeta_{2}}{4 t} \mathrm{H}_{1}(t)\right)+(1-t) g_{1}(t)\left(\frac{31 \ln (2)}{16}+\frac{1}{144}(265+31 \pi(-3 i+\sqrt{3})) \ldots\right.
\end{aligned}
$$

Structure in x space

Expansion around $x=1$:

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{L} \hat{a}_{k, l}(1-x)^{k} \ln ^{\prime}(1-x)
$$

Expansion around $x=0$:

$$
\frac{1}{x} \sum_{k=0}^{\infty} \sum_{l=0}^{s} \hat{b}_{k, l} x^{k} \ln ^{\prime}(x)
$$

Expansion around $x=1 / 2:$

$$
\sum_{k=0}^{\infty} \hat{c}_{k}\left(x-\frac{1}{2}\right)^{k} .
$$

The occurring constants $\mathrm{G}(\ldots ; 1)$ are calculated numerically. [At most double integrals.]

Iterating on ${ }_{2} F_{1}$ solutions

- In $A_{Q g}^{(3)}$ only 23×3 systems contribute, which are not factorizing at 1 st order \& they are conjugate to each other.
- Both form seeds on which only 1st order factorizing factors have to be iterated to obtain all ${ }_{2} F_{1}$-dependent master integrals.
- The corresponding differential equations read

$$
\begin{gathered}
y^{\prime}(x)+\frac{A}{x-b} y(x)=h(x) \\
y(x)=(b-x)^{-A}\left[C b^{A}+\int_{0}^{x} d y(b-y)^{A} h(y)\right] .
\end{gathered}
$$

- $h(x)$ is a G-functions containing ${ }_{2} F_{1}$-dependent letters.
- The occurring G-functions containing ${ }_{2} F_{1}$-dependent letters have a rather simple structure, which helps in expansions and the calculation of constants.
- In this way we compute all ${ }_{2} F_{1}$-dependent master integrals contributing to
$\mathrm{a}_{Q g}^{(3)}$. All types of other letters up to root-valued letters contribute here too.

The massive OME $A_{g g, Q}^{(3)}$

A 1st order factorizing, but involved case.

$$
\begin{aligned}
& \hat{\hat{A}}_{g g, Q}^{(1)}=\left(\frac{\hat{m}^{2}}{\mu^{2}}\right)^{\varepsilon / 2}\left[\frac{\hat{\gamma}_{g g}^{(0)}}{\varepsilon}+a_{g g, Q}^{(1)}+\varepsilon \overline{\mathbf{a}}_{g g, Q}^{(1)}+\varepsilon^{2} \overline{\bar{a}}_{g g, Q}^{(1)}\right]+O\left(\varepsilon^{3}\right), \\
& \hat{\hat{A}}_{g g, Q}^{(2)}=\left(\frac{\hat{m}^{2}}{\mu^{2}}\right)^{\varepsilon}\left[\frac{1}{\varepsilon^{2}} c_{g g, Q,(2)}^{(-2)}+\frac{1}{\varepsilon} c_{g g, Q,(2)}^{(-1)}+c_{g g, Q,(2)}^{(0)}+\varepsilon c_{g g, Q,(2)}^{(1)}\right]+O\left(\varepsilon^{2}\right), \\
& \hat{\hat{A}}_{g g, Q}^{(3)}=\left(\frac{\hat{m}^{2}}{\mu^{2}}\right)^{3 \varepsilon / 2}\left[\frac{1}{\varepsilon^{3}} c_{g g, Q,(3)}^{(-3)}+\frac{1}{\varepsilon^{2}} c_{g g, Q,(3)}^{(-2)}+\frac{1}{\varepsilon} c_{g g, Q,(3)}^{(-1)}+a_{g g, Q}^{(3)}\right]+O(\varepsilon) .
\end{aligned}
$$

The alphabet:

$$
\mathfrak{A}=\left.\left\{f_{k}(x)\right\}\right|_{k=1 . .6}=\left\{\frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}, \frac{\sqrt{1-x}}{x}, \sqrt{x(1-x)}, \frac{1}{\sqrt{1-x}}\right\} .
$$

Binomial Sums

$$
\begin{array}{ll}
\mathrm{BS}_{0}(N)=\frac{1}{2 N-(2 l+1)}, \quad l \in \mathbb{N}, & \mathrm{BS}_{1}(N)=4^{N} \frac{(N!)^{2}}{(2 N)!} \\
\mathrm{BS}_{2}(N)=\frac{1}{4^{N}} \frac{(2 N)!}{(N!)^{2}}, & \mathrm{BS}_{3}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{-\tau_{1}\left(2 \tau_{1}\right)!}}{\left(\tau_{1}!\right)^{2} \tau_{1}}, \\
\mathrm{BS}_{4}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{\tau_{1}}\left(\tau_{1}!\right)^{2}}{\left(2 \tau_{1}\right)!\tau_{1}^{2}}, & \mathrm{BS}_{5}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{\tau_{1}}\left(\tau_{1}!\right)^{2}}{\left(2 \tau_{1}\right)!\tau_{1}^{3}}, \\
\mathrm{BS}_{6}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{-\tau_{1}\left(2 \tau_{1}\right)!\sum_{\tau_{2}=1}^{\tau_{1}} \frac{4^{\tau_{2}}\left(\tau_{2}!\right)^{2}}{\left(2 \tau_{2}\right)!\tau_{2}^{2}}}}{\left(\tau_{1}!\right)^{2} \tau_{1}}, & \mathrm{BS}_{7}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{-\tau_{1}\left(2 \tau_{1}\right)!\sum_{\tau_{2}=1}^{\tau_{1}} \frac{4^{\tau_{2}}\left(\tau_{2}!\right)^{2}}{\left(2 \tau_{2}\right)!\tau_{2}^{3}}}}{\left(\tau_{1}!\right)^{2} \tau_{1}} \\
\mathrm{BS}_{8}(N)=\sum_{\tau_{1}=1}^{N} \frac{\sum_{\tau_{2}=1}^{\tau_{1}} \frac{4^{\tau_{2}}\left(\tau_{2}!\right)^{2}}{\left(2 \tau_{2}\right)!\tau_{2}^{2}}}{\tau_{1}}, & \mathrm{BS}_{9}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{-\tau_{1}\left(2 \tau_{1}\right)!\sum_{\tau_{2}=1}^{\tau_{1}} \frac{4^{\tau_{2}}\left(\tau_{2}!\right)^{2} \sum_{\tau_{3}=1}^{\tau_{2}} \frac{1}{\tau_{3}}}{\left(2 \tau_{2}\right)!\tau_{2}^{2}}}}{\mathrm{BS}_{10}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{\tau_{1}}}{\left(2 \tau_{1}\right.} \frac{1}{\tau_{1}} \tau_{1}^{2} S_{1}\left(\tau_{1}\right)}
\end{array}
$$

Recursions and Asymptotic Representation

$$
\begin{aligned}
& \mathrm{BS}_{8}(N)-\mathrm{BS}_{8}(N-1)=\frac{1}{N} \mathrm{BS}_{4}(N) \\
& \mathrm{BS}_{9}(N)-\mathrm{BS}_{9}(N-1)=\frac{1}{N} \mathrm{BS}_{3}(N) \mathrm{BS}_{10}(N) \\
& \mathrm{BS}_{0}(N) \propto \frac{1}{2 N} \sum_{k=0}^{\infty}\left(\frac{21+1}{2 N}\right)^{k}, \\
& \mathrm{BS}_{8}(N)-\mathrm{BS}_{10}(N-1)=\frac{1}{N} \mathrm{BS}_{1}(N) S_{1} \\
& \propto-7 \zeta_{3}+\left[+3\left(\ln (N)+\gamma_{E}\right)+\frac{3}{2 N}-\frac{1}{4 N^{2}}+\frac{1}{40 N^{4}}-\frac{1}{84 N^{6}}+\frac{1}{80 N^{8}}-\frac{1}{44 N^{10}}\right] \zeta_{2} \\
&+\sqrt{\frac{\pi}{N}\left[4-\frac{23}{18 N}+\frac{1163}{2400 N^{2}}-\frac{64177}{564480 N^{3}}-\frac{237829}{7741440 N^{4}}+\frac{5982083}{166526976 N^{5}}\right.} \\
&+\frac{5577806159}{438593126400 N^{6}}-\frac{12013850977}{377864847360 N^{7}}-\frac{1042694885077}{90766080737280 N^{8}} \\
&\left.+\frac{6663445693908281}{127863697547722752 N^{9}}+\frac{23651830282693133}{1363413316298342400 N^{10}}\right]
\end{aligned}
$$

Inverse Mellin Transform

$$
\begin{aligned}
\mathbf{M}^{-1}\left[\mathrm{BS}_{8}(N)\right](x)= & {\left[-\frac{4(1-\sqrt{1-x})}{1-x}+\left(\frac{2(1-\ln (2))}{1-x}+\frac{\mathrm{H}_{0}(x)}{\sqrt{1-x}}\right) \mathrm{H}_{1}(x)-\frac{\mathrm{H}_{0,1}(x)}{\sqrt{1-x}}\right.} \\
& \left.+\frac{\mathrm{H}_{1}(x) \mathrm{G}(\{6,1\}, x)}{2(1-x)}-\frac{\mathrm{G}(\{6,1,2\}, x)}{2(1-x)}\right]_{+}, \\
\mathbf{M}^{-1}\left[\mathrm{BS}_{10}(N)\right](x)= & {\left[-\frac{1}{1-x}\left[-4-4 \ln (2)(-1+\sqrt{1-x})+4 \sqrt{1-x}+\zeta_{2}\right]\right.} \\
& +2(-1+\ln (2))(-1+\sqrt{1-x}+x) \frac{\mathrm{H}_{0}(x)}{(1-x)^{3 / 2}}-2 \frac{\mathrm{H}_{1}(x)}{\sqrt{1-x}} \\
& +\frac{\mathrm{H}_{0,1}(x)}{\sqrt{1-x}}-\frac{(-2+\ln (2)) \mathrm{G}(\{6,1\}, x)}{1-x}+\frac{\mathrm{G}(\{6,1,2\}, x)}{2(1-x)} \\
& \left.-\frac{\mathrm{G}(\{1,6,1\}, x)}{2(1-x)}\right]_{+} .
\end{aligned}
$$

Small x limits of $a_{g g, Q}^{(3)}$

$$
\begin{aligned}
& a_{g g, Q}^{x \rightarrow 0}(x) \propto \\
& \quad \frac{1}{x}\left\{\operatorname { l n } (x) \left[C_{A}^{2} T_{F}\left(-\frac{11488}{81}+\frac{224 \zeta_{2}}{27}+\frac{256 \zeta_{3}}{3}\right)+C_{A} C_{F} T_{F}\left(-\frac{15040}{243}-\frac{1408 \zeta_{2}}{27}\right.\right.\right. \\
& \left.\left.\quad-\frac{1088 \zeta_{3}}{9}\right)\right]+C_{A} T_{F}^{2}\left[\frac{112016}{729}+\frac{1288}{27} \zeta_{2}+\frac{1120}{27} \zeta_{3}+\left(\frac{108256}{729}+\frac{368 \zeta_{2}}{27}-\frac{448 \zeta_{3}}{27}\right)\right. \\
& \left.\quad \times N_{F}\right]+C_{F}\left[T_{F}^{2}\left(-\frac{107488}{729}-\frac{656}{27} \zeta_{2}+\frac{3904}{27} \zeta_{3}+\left(\frac{116800}{729}+\frac{224 \zeta_{2}}{27}-\frac{1792 \zeta_{3}}{27}\right) N_{F}\right)\right. \\
& \left.\quad+C_{A} T_{F}\left(-\frac{5538448}{3645}+\frac{1664 \mathrm{~B}_{4}}{3}-\frac{43024 \zeta_{4}}{9}+\frac{12208}{27} \zeta_{2}+\frac{211504}{45} \zeta_{3}\right)\right] \\
& \quad+C_{A}^{2} T_{F}\left(-\frac{4849484}{3645}-\frac{352 \mathrm{~B}_{4}}{3}+\frac{11056 \zeta_{4}}{9}-\frac{1088}{81} \zeta_{2}-\frac{84764}{135} \zeta_{3}\right) \\
& \left.\quad+C_{F}^{2} T_{F}\left(\frac{10048}{5}-640 \mathrm{~B}_{4}+\frac{51104 \zeta_{4}}{9}-\frac{10096}{9} \zeta_{2}-\frac{280016}{45} \zeta_{3}\right)\right\}
\end{aligned}
$$

Small x limits of $a_{g g, Q}^{(3)}$

$$
\begin{aligned}
& +\left[-\frac{4}{3} C_{F} C_{A} T_{F}+\frac{2}{15} C_{F}^{2} T_{F}\right] \ln ^{5}(x)+\left[-\frac{40}{27} C_{A}^{2} T_{F}+\frac{4}{9} C_{F}^{2} T_{F}+C_{F}\left(-\frac{296}{27} C_{A} T_{F}\right.\right. \\
& \left.\left.+\left(\frac{28}{27}+\frac{56}{27} N_{F}\right) T_{F}^{2}\right)\right] \ln ^{4}(x)+\left[\frac{112}{81} C_{A}\left(1+2 N_{F}\right) T_{F}^{2}+C_{F}\left(\left(\frac{1016}{81}+\frac{496}{81} N_{F}\right) T_{F}^{2}\right.\right. \\
& \left.\left.+C_{A} T_{F}\left(-\frac{10372}{81}-\frac{328 \zeta_{2}}{9}\right)\right)+C_{F}^{2} T_{F}\left[-\frac{2}{3}+\frac{4 \zeta_{2}}{9}\right]+C_{A}^{2} T_{F}\left[-\frac{1672}{81}+8 \zeta_{2}\right]\right] \ln ^{3}(x) \\
& +\left[\frac{8}{81} C_{A}\left(155+118 N_{F}\right) T_{F}^{2}+C_{F}\left[T_{F}^{2}\left(-\frac{32}{81}+N_{F}\left(\frac{3872}{81}-\frac{16 \zeta_{2}}{9}\right)+\frac{232 \zeta_{2}}{9}\right]\right.\right. \\
& \left.+C_{A} T_{F}\left(-\frac{70304}{81}-\frac{680 \zeta_{2}}{9}+\frac{80 \zeta_{3}}{3}\right)\right)+C_{A}^{2} T_{F}\left[\frac{4684}{81}+\frac{20 \zeta_{2}}{3}\right]+C_{F}^{2} T_{F}[56 \\
& \left.\left.+\frac{8 \zeta_{2}}{3}-40 \zeta_{3}\right]\right] \ln ^{2}(x)+\left[C _ { F } \left[T _ { F } ^ { 2 } \left(\frac{140992}{243}+N_{F}\left(\frac{182528}{243}-\frac{400 \zeta_{2}}{27}-\frac{640 \zeta_{3}}{9}\right)\right.\right.\right.
\end{aligned}
$$

Small and large x limits of $a_{g g, Q}^{(3)}$

$$
\begin{aligned}
& \left.\left.-\frac{728}{27} \zeta_{2}-\frac{224}{9} \zeta_{3}\right)+C_{A} T_{F}\left(-\frac{514952}{243}+\frac{152 \zeta_{4}}{3}-\frac{21140 \zeta_{2}}{27}-\frac{2576 \zeta_{3}}{9}\right)\right] \\
& +C_{A} T_{F}^{2}\left[\frac{184}{27}+N_{F}\left(\frac{656}{27}-\frac{32 \zeta_{2}}{27}\right)+\frac{464 \zeta_{2}}{27}\right]+C_{A}^{2} T_{F}\left[-\frac{42476}{81}-92 \zeta_{4}+\frac{4504 \zeta_{2}}{27}\right. \\
+ & \left.\left.\frac{64 \zeta_{3}}{3}\right]+C_{F}^{2} T_{F}\left[-\frac{1036}{3}-\frac{976 \zeta_{4}}{3}-\frac{58 \zeta_{2}}{3}+\frac{416 \zeta_{3}}{3}\right]\right] \ln (x), \\
a_{g g, Q}^{(3), x \rightarrow 1}(x) \propto & a_{g g, Q, \delta}^{(3)} \delta(1-x)+a_{g g, Q, \text { plus }}^{(3)}(x)+\left[-\frac{32}{27} C_{A} T_{F}^{2}\left(17+12 N_{F}\right)+C_{A} C_{F} T_{F}\left(56-\frac{32 \zeta_{2}}{3}\right)\right. \\
& \left.+C_{A}^{2} T_{F}\left(\frac{9238}{81}-\frac{104 \zeta_{2}}{9}+16 \zeta_{3}\right)\right] \ln (1-x)+\left[-\frac{8}{27} C_{A} T_{F}^{2}\left(7+8 N_{F}\right)\right. \\
& \left.+C_{A}^{2} T_{F}\left(\frac{314}{27}-\frac{4 \zeta_{2}}{3}\right)\right] \ln ^{2}(1-x)+\frac{32}{27} C_{A}^{2} T_{F} \ln ^{3}(1-x) .
\end{aligned}
$$

Representations of the OME

- The logarithmic parts of $(\Delta) A_{Q g}^{(3)}$ were computed in [Behring et al., (2014)], [JB et al. (2021)].
- We did not spent efforts to choose the MI basis such that the needed ε-expansion is minimal, which we could afford in all first order factorizing cases.
- N space
- Recursions available for all building blocks: $N \rightarrow N+1$.
- Asymptotic representations available.
- Contour integral around the singularities of the problem at the non-positive real axis.
- x space
- All constants occurring in the transition $t \rightarrow x$ can be calculated in terms of ζ-values.
- This can be proven analytically by first rationalizing and then calculating the obtained cyclotomic G-functions.
- Separate the $\delta(1-x)$ and + -function terms first.
- Series representations to 50 terms around $x=0$ and $x=1$ can be derived for the regular part analytically (12 digits).
- The accuracy can be easily enlarged, if needed.

Introduction 0000000	Solutions in Mellin Space 00	Inverse Mellin transform via analytic continuation 000000000000	The massive OME $A^{(3)}$ $0000000000^{\text {gl }}$, Q	Conclusions 00
Johannes Blüm	thematical Structures in N	trix Elements and Wilson Coefficients	July, 25-28, 2023	32/37

The non- N_{F} terms of $a_{g g, Q}^{(3)}(N)$ (rescaled) as a function of x. Full line (black): complete result; upper dotted line (red): term $\propto \ln (x) / x$, BFKL limit; lower dashed line (cyan): small x terms $\propto 1 / x$; lower dotted line (blue): small x terms including all $\ln (x)$ terms up to the constant term; upper dashed line (green): large x contribution up to the constant term; dash-dotted line (brown): complete large x contribution.

1st order factorizing contributions: $a_{Q g}^{(3)}$

- 1009 of 1233 contributing Feynman diagrams
- Solved: N_{F}-terms, ζ_{2}, ζ_{4} and B_{4} terms, unpolarized and polarized.
- Contributions to the rational and ζ_{3} terms:
- The sum of the contributions vanishes for $N \rightarrow \infty$, while the individual terms $\propto 1$ and $\propto \zeta_{3}$ do strongly diverge.
- Dynamical generation of a factor of ζ_{3}.
- Calculated asymptotic expansions in N space: harmonic sums, generalized harmonic sums, binomial sums
- Appearance of a large set of special numbers given as G-functions at $x=1$
- individually divergent contributions for $N \rightarrow \infty: \propto 2^{N}, 4^{N}$ cancel between the different terms
- Calculated inverse Mellin transforms: requires the use of the t-variable method in the most involved cases for nested binomial sums.

Current summary on $F_{2}^{\text {charm }}$

An example to show numerical effects: the charm quark contributions to the structure function $F_{2}\left(x, Q^{2}\right)$

Allows to strongly reduce the current theory error on m_{c}.
Started ~ 2009; might be completed this year.
Lots of new algorithms had to be designed; different new function spaces; new analytic calculation techniques..

Conclusions

- Contributions to massless \& massive OMEs and Wilson coefficients factorizing at 1st order can be computed in Mellin N space using difference ring techniques as implemented in the package Sigma.
- N-space methods also applicable in the case of non-1st order factorization are more involved and need further study.
- x-space representations are needed also to determine the small x behaviour, since it cannot be obtained by the N-space methods, because they are related to integer values in N not covered.
- The t-resummation of the original N-space expressions is already necessary to perform the IBP reduction.
- The transformation from the continuous variable t to the continuous variable x is possible trough the optical theorem.
- This applies to all 1 st order factorizing cases and also to non-1st order factorizing situations, provided one can derive a closed form solution of the respective equations and perform the analytic continuation.
- This includes also the calculation of various new constants, which might open up a new field for special numbers, unless these quantities finally reduce to what is known already.
- The moments of the master integrals depend on ζ-values only.

Conclusions

- It is most efficient to work with ${ }_{2} F_{1}$-solutions in the present examples, because they are most compact and since everything is known about them.
- For numerical representations analytic expansions around $x=0, x=1 / 2$ and $x=1$ suffice, with ~ 50 terms, (Example: $a_{Q g}^{(3)}$). In some cases further overlapping series expansions have to be performed.
- $A_{g g, Q}^{(3)}$ has contributions from finite central binomial sums or square-root valued alphabets, factorizing at 1st order.
- Both efficient N - and x-space solutions can be derived which are very fast numerically.
\Longrightarrow QCD analysis.
- BFKL-like approaches are shown to utterly fail in describing these quantities. Various sub-leading terms are needed in addition.

[^0]: ${ }^{2}$ Supported by TU München.

