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Introduction
Massive OMEs allow to describe the massive DIS Wilson coefficients for Q2 � m2

Q .
Furthermore, they form the transition elements in the variable flavor numer scheme (VFNS).
The current state of art is 3-loop order, including two-mass corrections, because mc/mb us not
small.
After having calculated a series of moments in 2009 I. Bierenbaum, JB, S. Klein, Nucl. Phys B 820 (2009) 417,
we started to calculate all OMEs for general values of the Mellin variable N.
There are the following massive OMEs: ANS

qq,Q,Aqg,Q,APS
qq,Q,Agq,Q,APS

Qq ,Agg,Q,AQg .

To 2-loop order ANS
qq,Q,A

PS
Qq ,AQg , [2007] Agq,Q,Agg,Q [2009] contribute. These quantities are

represented by harmonic sums resp. harmonic polylogarithms. [Older work by van Neerven, et al.]
The 3-loop contributions of O(NF ) [2010] to all OMEs and the ANS

qq,Q,Aqg,Q,Agq,Q,APS
qq,Q [2014] are

also given by harmonic sums only. [Also all logarithmic terms of all OMEs.]
For APS

Qq [2014] also generalized harmonic sums are necessary.
Agg,Q [2022] requires finite binomial sums.
Finally, AQg depends also on 2F1-solutions [2017] (or modular forms).
In the two-mass case to 3-loop order ANS

qq,Q,Aqg,Q,APS
qq,Q,A

PS
Qq ,Agq,Q,Agg,Q [2017-2020] can be solved

analytically due to 1st order factorization of the respective differential equations. The solution for
AQg is by far more involved.
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Mathematical Structure of Feynman Integrals
1998: Harmonic Sums [Vermaseren; JB]. At this time Nielsen integrals were exhausted and
something new had to be done for single scale quantities.

A new era in QFT started.
1997 More was known (or claimed to be) on numbers [zero scale quantities] [Broadhurst, Kreimer]

1999: Harmonic Polylogarithms [Remiddi, Vermaseren]

2000, 2003, 2009: Analytic continuation of harmonic sums, systematic algebraic reduction;
structural relations [JB]

1999,2001: Generalized Harmonic Sums [Borwein, Bradley, Broadhurst, Lisonek], [Moch, Uwer, Weinzierl]

2004: Infinite harmonic (inverse) binomial sums [Davydychev, Kalmykov; Weinzierl]

2009: MZV data mine [JB, Broadhurst, Vermaseren]

2011: (generalized) Cyclotomic Harmonic Sums, polylogarithms and numbers [Ablinger, JB, Schneider]

2013: Systematic Theory of Generalized Harmonic Sums, polylogarithms and numbers [Ablinger, JB,

Schneider]

2014: Finite nested Generalized Cyclotomic Harmonic Sums with (inverse) Binomial Weights
[Ablinger, JB, Raab, Schneider]

2014-: Elliptic integrals with (involved) rational arguments.
now: More-scale problem: Kummer-elliptic integrals

Particle Physics Generates NEW Mathematics & steadily needs new methods from Mathematics.
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Function Spaces

Sums Integrals Special Numbers
Harmonic Sums Harmonic Polylogarithms multiple zeta values

N∑
k=1

1

k

k∑
l=1

(−1)l

l3

∫ x

0

dy

y

∫ y

0

dz

1 + z

∫ 1

0
dx

Li3(x)

1 + x
= −2Li4(1/2) + ...

gen. Harmonic Sums gen. Harmonic Polylogarithms gen. multiple zeta values
N∑

k=1

(1/2)k

k

k∑
l=1

(−1)l

l3

∫ x

0

dy

y

∫ y

0

dz

z − 3

∫ 1

0
dx

ln(x + 2)

x − 3/2
= Li2(1/3) + ...

Cycl. Harmonic Sums Cycl. Harmonic Polylogarithms cycl. multiple zeta values
N∑

k=1

1

(2k + 1)

k∑
l=1

(−1)l

l3

∫ x

0

dy

1 + y2

∫ y

0

dz

1− z + z2
C =

∞∑
k=0

(−1)k

(2k + 1)2

Binomial Sums root-valued iterated integrals associated numbers
N∑

k=1

1

k2

(2k

k

)
(−1)k

∫ x

0

dy

y

∫ y

0

dz

z
√

1 + z
H8,w3 = 2arccot(

√
7)2

iterated integrals on 2F1functions associated numbers∫ z

0
dx

ln(x)

1 + x
2F1

[ 4
3 ,

5
3

2
;

x2(x2 − 9)2

(x2 + 3)3

] ∫ 1

0
dx 2F1

[ 4
3 ,

5
3

2
;

x2(x2 − 9)2

(x2 + 3)3

]
shuffle, stuffle, and various structural relations =⇒ algebras
Except the last line integrals, all other ones stem from 1st order factorizable equations =⇒ modular forms.
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Introduction

Also the corresponding quantities in the polarized case were calculated.
A very long tale:

42 physics and 26 algorithmic and mathematical journal/book publications so far.
All solved cases up to now could be calculated in the single mass case in Mellin space.
In the two-mass PS-case one has to refer to x space, because in Mellin space there is no 1st order
factorization.
Massless 3-loop calculations: anomalous dimensions and Wilson coefficients
(unpolarized/polarized), JB, P. Marquard, C. Schneider, K. Schönwald, Nucl. Phys B 971 (2021) 115542, JHEP 01

(2022) 193, Nucl. Phys. B 980 (2022) 115794, JHEP 11 (2022) 156 (extending and confirming earlier work by Moch,

Vermaseren and Vogt, [2004,2005,2014])

massive QED applications: JB, A. De Freitas, C. Raab, K. Schönwald, W.L. van Neerven, 2011, 2019/21.

Agg,Q : Also here one diagram is better computed in x-space first.
AQg : ongoing: 2F1 contributions; not yet implemented in N-space algorithms.
Very large recurrences can be computed. However, their factorization beyond the first order factors
is still not possible.
Therefore, we will deal with the 2F1-dependent master integrals in x space first.
How to go from N-space to x-space analytically ?
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Principal computation steps

Chains of packages are used to perform the calculation:

QGRAF, Nogueira, 1993 Diagram generation

FORM, Vermaseren, 2001; Tentyukov, Vermaseren, 2010 Lorentz algebra

Color, van Ritbergen, Schellekens and Vermaseren, 1999 Color algebra

Reduze 2 Studerus, von Manteuffel, 2009/12, Crusher, Marquard, Seidel IBPs

Method of arbitrary high moments, JB, Schneider, 2017 Computing large numbers of Mellin moments

Guess, Kauers et al. 2009/2015; JB, Kauers, Schneider, 2009 Computing the recurrences

Sigma, EvaluateMultiSums, SolveCoupledSystems, Schneider, 2007/14 Solving the
recurrences

OreSys, Zürcher, 1994; Gerhold, 2002; Bostan et al., 2013 Decoupling differential and difference equations

Diffeq, Ablinger et al, 2015, JB, Marquard, Rana, Schneider, 2018 Solving differential equations

HarmoncisSums, Ablinger and Ablinger et al. 2010-2019 Simplifying nested sums and iterated integrals to
basic building blocks, performing series and asymptotic expansions, Almkvist-Zeilberger algorithm
etc.
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Solutions in Mellin Space

Use IBP relations to obtain large sets of Mellin moments JB, Schneider, 2017

Compute the corresponding recurrences for all color-ζ factors.

Solve all 1st order factorizing cases by using the package Sigma.

Inverse Mellin transform by using the tools of the package HarmonicSums.

Numerical implementations in N- and x space.
Remaining: Non-first order factorizable cases.

A(3)
Qg : color coefficients ∝ T 2

F : 8000 moments allow to get all recurrences.

A(3)
Qg : color coefficients ∝ TFζ3: 15000 moments allow to get all recurrences.

Many more moments needed to obtain the recurrences for the rational terms ∝ TF .
the solutions for ∝ T 2

F and ∝ T 2
F ζ3 each do diverge for N →∞, while their sum converges to 0.

Observe the dynamical creation of a ζ3 term in the large N limit.

One may try to compute the asymptotic behaviour of these recurrences, but this needs much more
work.

Usually it is important here to know the associated x space solution.

More work is needed here.
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Conjugation

f2(N, ε) ≡ f C
1 (N, ε) = −

N∑
k=0

(−1)k

(
N
k

)
f1(k , ε)

f̃ C
1 (x , ε) = −f̃1(1− x), x ∈]0, 1[.

Example: Vermaseren, 1998

SC
1 (N) =

1
N(

− 1
1− x

)C

=
1
x

Relates many master integrals, which need not to be calculated individually.
Can be easily traced by inspecting their (known) Mellin moments.
Holds for general ε.
Saves us one 2F1 dependent 3× 3 system, since conjugation holds irrespectively of 1st order
factorization.
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Inverse Mellin transform via analytic continuation
Resumming Mellin N into a continuous variable t , observing crossing relations. Ablinger et al. 2014

∞∑
k=0

tk (∆.p)k 1
2

[1± (−1)N ] =
1
2

[
1

1− t∆.p
± 1

1 + t∆.p

]
.

A = {f1(t), ..., fm(t)}

G(b,~a; t) =

∫ t

0
dx1fb(x1)G(~a; x1).

Regularization for t → 0 needed.[
d
dt

1
fak−1 (t)

d
dt
...

1
fa1 (t)

d
dt

]
G(~a; t) = fak (t).

F(x) =
1
π

ImF̃
(

t =
1
x

)
. (1)

t-space is still Mellin space. One needs closed expressions to perform the analytic continuation (1).
Continuation is needed to calculate the small x behaviour analytically.
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Harmonic polylogarithms

AHPL = {f0, f1, f−1}
{

1
t
,

1
1− t

,
1

1 + t

}
Hb,~a(x) =

∫ x

0
dyfb(y)H~a(y), fc ∈ AHPL, H 0,...,0︸︷︷︸

k

(x) :=
1
k!

lnk (x).

A finite monodromy at x = 1 requires at least one letter f1(t).
Example:

F̃1(t) = H0,0,1(t)

F1(x) =
1
2
H2

0(x)

M[F1(x)](n − 1) =
1
n3

F̃1(t) = t +
t2

8
+

t3

27
+

t4

64
+

t5

125
+

t6

216
+

t7

343
+

t8

512
+

t9

729
+

t10

1000
+ O(t11)
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Cyclotomic harmonic polylogarithms

Also here the index set has to contain f1(t).

Acycl =

{
1
x

}
∪

{
1

1− x
,

1
1 + x

,
1

1 + x + x2 ,
x

1 + x + x2

1
1 + x2 ,

x
1 + x2 ,

1
1− x + x2 ,

x
1− x + x2 , ...

}
.

Example:
F̃2(t) = H{2,0},{1,0},{1,0},{6,0}(t)

F2(x) = −1
3

ln2(2)π
1√
3
− 1

9
π3 1√

3
+

1
3

[
−ψ(1)

(
1
3

)
+ 4ζ2

]
H0 +

π

3
√

3
H2

0

+

[
− 2

3
√

3
πH0 −

4
3
ζ2 +

1
3
ψ(1)

(
1
3

)]
H−1 +

2

3
√

3
π

[
H0,1 + H0,−1 −H−1,1

]
+

4
3

ln(2)ζ2

−1
3

ln(2)ψ(1)

(
1
3

)
.
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Generalized harmonic polylogarithms

AgHPL =

{
1

x − a

}
, a ∈ C.

F3(x) =
1
π

ImG

({
1

2− y

}
;

1
t

)
= θ

(
1
2
− x
)

γ1 = 1/(1− 2x)

F5(x) =
1
π

Im
t

t − 1

[
H0,0,0,1

(
1
t

)
+ 2G

(
γ1, 0, 0, 1;

1
t

)]
=

1
1− x

{
θ(1− x)

[
1
24

(
4 ln3(2)

−2 ln(2)π2 + 21ζ3
)
−H2,0,0(x)

]
− θ(2− x)

(
4 ln3(2)− 2 ln(2)π2 + 21ζ3

)}
,

In intermediary steps Heaviside functions occur and the support of the x-space functions is here [0,2].

M̃
+,b
a [g(x)](N) =

∫ a

0
dx(xN − bN)f (x), a, b ∈ R,
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Square root valued alphabets

Asqrt =

{
f4, f5, f6 . . .

}

=

{√
1− x
x

,
√

x(1− x),
1√

1− x
,

1
√

x
√

1± x
,

1

x
√

1± x
,

1√
1± x

√
2± x

,
1

x
√

1± x/4
, ...

}
,

Monodromy also through:

(1− t)α, α ∈ R,

F7(x) =
1
π

Im
1
t
G

(
4;

1
t

)
= 1− 2(1− x)(1 + 2x)

π

√
1− x

x
− 8
π
G
(
5; x
)
,

F8(x) =
1
π

Im
1
t
G

(
4, 2;

1
t

)
= − 1

π

[
4

(1− x)3/2

√
x

+ 2(1− x)(1 + 2x)

√
1− x

x
[H0(x) + H1(x)]

+8[G
(
5, 2; x

)
+ G

(
5, 1; x

)
]

]
,
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Iterative non-iterative Integrals

Master integrals, solving differential equations not factorizing to 1st order

2F1 solutions Ablinger et al. [2017]

Mapping to complete elliptic integrals: duplication of the higher transcendental letters.

Complete elliptic integrals, modular forms Sabry, Broadhurst, Weinzierl, Remiddi, Duhr, Broedel et al. and many

more

Abel integrals

K3 surfaces Brown, Schnetz [2012]

Calabi-Yau motives Klemm, Duhr, Weinzierl et al. [2022]

Refer to as few as possible higher transcendental functions, the properties of which are known in full
detail.

A(3)
Qg : effectively only one 3× 3 system of this kind.

The system is connected to that occurring in the case of ρ parameter. Ablinger et al. [2017], JB et al.

[2018], Abreu et al. [2019]

Most simple solution: two 2F1 functions.
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Iterative non-iterative Integrals

d
dt


F1(t)

F2(t)

F3(t)

 =


− 1

t − 1
1−t 0

0 − 1
t(1−t) − 2

1−t

0 2
t(8+t)

1
8+t




F1(t)

F2(t)

F3(t)

+


R1(t, ε)

R2(t, ε)

R3(t, ε)

+ O(ε),

R1(t, ε) =
1

t(1− t)ε3

[
16− 68

3
ε+

(
59
3

+ 6ζ2

)
ε2 +

(
−65

12
− 17

2
ζ2 + 2ζ3

)
ε3

]
+ O(ε),

R2(t, ε) =
1

t(1− t)ε3

[
8− 16

3
ε+

(
4
3

+ 3ζ2

)
ε2 +

(
14
3
− 2ζ2 + ζ3

)
ε3

]
+ O(ε),

R3(t, ε) =
1

12t(8 + t)ε3

[
−192 + 8ε− 8

(
4 + 9ζ2

)
ε2 +

(
68 + 3ζ2 − 24ζ3

)
ε3]+ O(ε).

It is very important to which function Fi (t) the system is decoupled.
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Iterative non-iterative Integrals
Decoupling for F1 first leads to a very involved solution: 2F1-terms seemingly enter at O(1/ε)
already.
However, these terms are actually not there.
Furthermore, there is also a singularity at x = 1/4.
All this can be seen, when decoupling for F3 first.

Homogeneous solutions:

F ′3(t) +
1
t

F3(t) = 0, g0 =
1
t

F ′′1 (t) +
(2− t)
(1− t)t

F ′1(t) +
2 + t

(1− t)t(8 + t)
F1(t) = 0,

with

g1(t) =
2

(1− t)2/3(8 + t)1/3 2F1

[ 1
3 ,

4
3

2
;− 27t

(1− t)2(8 + t)

]
,

g2(t) =
2

(1− t)2/3(8 + t)1/3 2F1

[ 1
3 ,

4
3

2
3

; 1 +
27t

(1− t)2(8 + t)

]
,
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Iterative non-iterative Integrals
Alphabet:

A2 =

{
1
t
,

1
1− t

,
1

8 + t
, g1, g2,

g1

t
,

g1

1− t
,

g1

8 + t
,

g′1
t
,

g′1
1− t

,
g′1

8 + t
,

g2

t
,

g2

1− t
,

g2

8 + t
,

g′2
t
,

g′2
1− t

,

g′2
8 + t

, tg1, tg2

}

F1(t) =
8
ε3

[
1 +

1
t
H1(t)

]
− 1
ε2

[
1
6

(106 + t) +
(9 + 2t)

t
H1(t) +

4
t
H0,1(t)

]

+
1
ε

{
1
12

(271 + 9t) +

[
71 + 32t + 2t2

12t
+

3ζ2

t

]
H1(t) +

(9 + 2t)
2t

H0,1(t) +
2
t
H0,0,1(t)

+3ζ2

}
+

1
t

{
6696− 22680t − 16278t2 − 255t3 − 62t4

864t
+
(
9 + 9t + t2)g1(t)

[
31 ln(2)

16

+
1

144

(
265 + 31π(−3i +

√
3)
)

+
3
8

ln(2)ζ2 +
1
24

(
10 + π(−3i +

√
3)
)
ζ2 −

7
4
ζ3

]
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+G(18, t)

[
−93 ln(2)

16
+

1
48

(
− 265− 31π(−3i +

√
3)
)

+

(
−9 ln(2)

8

+
1
8

(
− 10− π

(
− 3i +

√
3
)))

ζ2 +
21
4
ζ3

]
. . .

+
5
2

[G(4, 14, 1, 2; t)−G(5, 8, 1, 2; t)] +
1
4

[G(13, 8, 1, 2; t)−G(7, 14, 1, 2; t)]

+
9
4

[G(10, 14, 1, 2; t)−G(16, 8, 1, 2; t)] +
3
4

[G(19, 14, 1, 2; t)−G(19, 8, 1, 2; t)]

}
+ O(ε),

F2(t) =
8
ε3 +

1
ε2

[
−1

3
(34 + t) +

2(1− t)
t

H1(t)

]
+

1
ε

[
116 + 15t

12
+ 3ζ2 −

(1− t)(8 + t)
3t

H1(t)

−1− t
t

H0,1(t)

]
+

992− 368t + 75t2 − 27t3

144t
+ (1− t)

((
43 + 10t + t2

)
12t

H1(t) +
(4− t)

4t

×H0,1(t) +
3ζ2

4t
H1(t)

)
+ (1− t)g1(t)

(
31 ln(2)

16
+

1
144

(
265 + 31π

(
− 3i +

√
3
))
. . .
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+
1
4

[g2(t)G(8, 1, 2; t)− g1(t)G(14, 1, 2; t)]

}
+ ζ3 + O(ε),

F3(t) =
1
ε2

[
10
3
− t

6

]
+

1
ε

[
−31

6
+

3t
8
−
(

1
3
− 1

6t
− t

6

)
H1(t)

]
+

[
3
4

ln(2)g1(t)

+
1
12

(
10 + π(−3i +

√
3)
)
g1(t)− g2(t)

3
+

25
54

[g1(t)G(13; t)− g2(t)G(7; t)]

+
28
27

[g2(t)G(8; t)− g1(t)G(14; t)] +
1
3

[g1(t)G(16; t)− g2(t)G(10; t)

]
ζ2 +

31
8

ln(2)g1(t)

+
1
72

(
265 + 31π(−3i +

√
3)
)
g1(t)− 7

2
ζ3g1(t)− 31g2(t)

18
+

31
18

[g1(t)G(16; t)

−g2(t)G(10; t)] +
7
12

[g1(t)G(5; t)− g2(t)G(4; t)] +
655
324

[g1(t)G(13; t)− g2(t)G(7; t)]

+
518
81

[g2(t)G(8; t)− g1(t)G(14; t)] +
1
3

[g1(t)G(5, 2; t)− g2(t)G(4, 2; t)]

+
1
12

[g2(t)G(6, 2; t)− g1(t)G(12, 2; t)] +
7
4

[g2(t)G(8, 2; t)− g1(t)G(14, 2; t)]

+
1
2

[g2(t)G(8, 1, 2; t)− g1(t)G(14, 1, 2; t)] + O(ε).
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Johannes Blümlein, DESY21 – Mathematical Structures in Massive Operator Matrix Elements February, 13-16, 2023 20/36



Iterative non-iterative Integrals

F1(x) =
8x
ε3 −

1
ε2 (2 + 9x − 4xH0) +

1
ε

[
1

12x
[2 + 32x + (71 + 36ζ2)x2]− 1

2
(2 + 9x)H0 + xH2

0

]
+F (0)

1 (x) + O(ε),

F2(x) = − 1
ε2 2(1− x) +

1
ε

(1− x)

[
(1 + 8x)

3x
−H0(x)

]
+ F (0)

2 (x) + O(ε),

F3(x) =
1
ε

(1− x)2

6x
+ F (0)

3 (x) + O(ε).

It is very essential to have no singularities in x ∈]0, 1[ because of the analytic continuation.
This would have not been the case using the elliptic integral representations [Ablinger et al., (2017)]:
discontinuity at x = 1/3.
Here: pole at x = -1/8; =⇒ convergence radius r ≤ 1/8 around x = 0.

The alphabet in x is obtained by t → 1/x and subsequent partial fractioning.
Three regions: x ∈ [0, 1/10], x ∈ [1/10, 8/10], x ∈ [8/10, 1], (overlapping choice).
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Structure in x space

Expansion around x = 1:

∞∑
k=0

L∑
l=0

âk,l (1− x)k lnl (1− x).

Expansion around x = 0:

1
x

∞∑
k=0

S∑
l=0

b̂k,lxk lnl (x).

Expansion around x = 1/2:

∞∑
k=0

ĉk

(
x − 1

2

)k

.

The occurring constants G(...; 1) are calculated numerically. [At most double integrals.]
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Iterative non-iterative Integrals

One example:
Expansion around x = 1:

F (0),1
3 (x) =

∞∑
k=2

c1
3,k (1− x)k

Expansion around x = 0:

F (0),0
3 (x) = −1

6
ln(x)

x
− 3

8x
+

(
1
2
− 7

6
ln(x)

)
+ x

(
9
8

+
7
12

ln(x)− 3
2

ln2(x)

)
+

1
3

x2 [−13 + 18 ln(x) + 9 ln2(x)
]

+
1
24

x3 [259− 720 ln(x)− 252 ln2(x)
]

+
1

15
x4 [−451 + 2295 ln(x) + 720 ln2(x)

]
+

3
80

x5 [2339− 22460 ln(x)− 6640 ln2(x)
]

+O(x6) At higher orders also non-rational terms contribute.

a(3)
Qg =

64
243

C2
ATF (1312 + 135ζ2 − 189ζ3)

ln(x)

x
[rescaled from PS],

[Ablinger et al. Nucl. Phys. B 890 (2014) 48]; [Catani et al., Nucl. Phys. B 366 (1991) 135].

Introduction Solutions in Mellin Space Inverse Mellin transform via analytic continuation The massive OME A
(3)
gg,Q Conclusions
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Iterative non-iterative Integrals

Expansion around x = 1/2:

F (0),1/2
3 (x) =

∞∑
k=0

c1/2
3,k

(
x − 1

2

)k

.

Similar results for F1(x) and F2(x).

Second 2F1-set:
Fk (x) = −Fk−3(1− x), k ∈ {4, 5, 6}.

by using the above representations [expressed in G–functions].

Check all representations against known Mellin moments numerically.

Introduction Solutions in Mellin Space Inverse Mellin transform via analytic continuation The massive OME A
(3)
gg,Q Conclusions

Johannes Blümlein, DESY25 – Mathematical Structures in Massive Operator Matrix Elements February, 13-16, 2023 24/36



Iterating on 2F1 solutions

In A(3)
Qg only 2 3× 3 systems contribute, which are not factorizing at 1st order & they are conjugate

to each other.

Both form seeds on which only 1st order factorizing factors have to be iterated to obtain all
2F1-dependent master integrals.

The corresponding differential equations read

y ′(x) +
A

x − b
y(x) = h(x)

y(x) = (b − x)−A

[
C bA +

∫ x

0
dy(b − y)Ah(y)

]
.

h(x) is a G-functions containing 2F1-dependent letters.

The occurring G-functions containing 2F1-dependent letters have a rather simple structure, which
helps in expansions and the calculation of constants.

In this way we compute all 2F1-dependent master integrals contributing to a(3)
Qg . All types of other

letters up to root-valued letters contribute here too.
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The massive OME A(3)
gg,Q

A 1st order factorizing, but involved case.

ˆ̂A(1)
gg,Q =

( m̂2

µ2

)ε/2
[
γ̂
(0)
gg

ε
+ a(1)

gg,Q + εa(1)
gg,Q + ε2a

(1)
gg,Q

]
+ O(ε3),

ˆ̂A(2)
gg,Q =

( m̂2

µ2

)ε[ 1
ε2 c(−2)

gg,Q,(2) +
1
ε

c(−1)
gg,Q,(2) + c(0)

gg,Q,(2) + εc(1)
gg,Q,(2)

]
+ O(ε2),

ˆ̂A(3)
gg,Q =

( m̂2

µ2

)3ε/2
[

1
ε3 c(−3)

gg,Q,(3) +
1
ε2 c(−2)

gg,Q,(3) +
1
ε

c(−1)
gg,Q,(3) + a(3)

gg,Q

]
+ O(ε) .

The alphabet:

A = {fk (x)}|k=1..6 =

{
1
x
,

1
1− x

,
1

1 + x
,

√
1− x
x

,
√

x(1− x),
1√

1− x

}
.
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Binomial Sums
BS0(N) =

1
2N − (2l + 1)

, l ∈ N, BS1(N) = 4N (N!)2

(2N)!
,

BS2(N) =
1

4N

(2N)!

(N!)2 , BS3(N) =
N∑

τ1=1

4−τ1
(
2τ1
)
!(

τ1!
)2
τ1

,

BS4(N) =
N∑

τ1=1

4τ1
(
τ1!
)2(

2τ1
)
!τ 2

1

, BS5(N) =
N∑

τ1=1

4τ1
(
τ1!
)2(

2τ1
)
!τ 3

1

,

BS6(N) =
N∑

τ1=1

4−τ1
(
2τ1
)
!
∑τ1
τ2=1

4τ2
(
τ2!
)2(

2τ2

)
!τ 2

2(
τ1!
)2
τ1

, BS7(N) =
N∑

τ1=1

4−τ1
(
2τ1
)
!
∑τ1
τ2=1

4τ2
(
τ2!
)2(

2τ2

)
!τ 3

2(
τ1!
)2
τ1

,

BS8(N) =
N∑

τ1=1

∑τ1
τ2=1

4τ2
(
τ2!
)2(

2τ2

)
!τ 2

2

τ1
, BS9(N) =

N∑
τ1=1

4−τ1
(
2τ1
)
!
∑τ1
τ2=1

4τ2
(
τ2!
)2 ∑τ2

τ3=1
1
τ3(

2τ2

)
!τ 2

2(
τ1!
)2
τ1

,

BS10(N) =
N∑

τ1=1

4τ1(2τ1
τ1

) 1
τ 2

1
S1(τ1).
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Johannes Blümlein, DESY28 – Mathematical Structures in Massive Operator Matrix Elements February, 13-16, 2023 27/36



Recursions and Asymptotic Representation
BS8(N)− BS8(N − 1) =

1
N

BS4(N),

BS9(N)− BS9(N − 1) =
1
N

BS3(N)BS10(N),

BS10(N)− BS10(N − 1) =
1
N

BS1(N)S1.

BS0(N) ∝ 1
2N

∞∑
k=0

(
2l + 1

2N

)k

,

BS8(N) ∝ −7ζ3 +

[
+3(ln(N) + γE ) +

3
2N
− 1

4N2 +
1

40N4 −
1

84N6 +
1

80N8 −
1

44N10

]
ζ2

+

√
π

N

[
4− 23

18N
+

1163
2400N2 −

64177
564480N3 −

237829
7741440N4 +

5982083
166526976N5

+
5577806159

438593126400N6 −
12013850977

377864847360N7 −
1042694885077

90766080737280N8

+
6663445693908281

127863697547722752N9 +
23651830282693133

1363413316298342400N10

]
,
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Inverse Mellin Transform

M−1[BS8(N)](x) =

[
−

4
(
1−
√

1− x
)

1− x
+

(
2(1− ln(2))

1− x
+

H0(x)√
1− x

)
H1(x)− H0,1(x)√

1− x

+
H1(x)G({6, 1}, x)

2(1− x)
− G({6, 1, 2}, x)

2(1− x)

]
+

,

M−1[BS10(N)](x) =

[
− 1

1− x

[
− 4− 4 ln(2)

(
− 1 +

√
1− x

)
+ 4
√

1− x + ζ2
]

+2(−1 + ln(2))
(
− 1 +

√
1− x + x

) H0(x)

(1− x)3/2
− 2

H1(x)√
1− x

+
H0,1(x)√

1− x
−

(−2 + ln(2))G
(
{6, 1}, x)

1− x
+

G({6, 1, 2}, x)

2(1− x)

−
G
(
{1, 6, 1}, x)

2(1− x)

]
+

.
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Small x limits of a(3)
gg,Q

ax→0
gg,Q(x) ∝

[
−4

3
CF CATF +

2
15

C2
F TF

]
ln5(x) +

[
−40

27
C2

ATF +
4
9

C2
F TF + CF

(
−296

27
CATF

+

(
28
27

+
56
27

NF

)
T 2

F

)]
ln4(x) +

[
112
81

CA(1 + 2NF )T 2
F + CF

((
1016
81

+
496
81

NF

)
T 2

F

+CATF

(
−10372

81
− 328ζ2

9

))
+ C2

F TF

[
−2

3
+

4ζ2

9

]
+ C2

ATF

[
−1672

81
+ 8ζ2

]]
ln3(x)

+

[
8
81

CA(155 + 118NF )T 2
F + CF

[
T 2

F

(
−32

81
+ NF

(
3872
81
− 16ζ2

9

)
+

232ζ2

9

]

+CATF

(
−70304

81
− 680ζ2

9
+

80ζ3

3

))
+ C2

ATF

[
4684

81
+

20ζ2

3

]
+ C2

F TF

[
56

+
8ζ2

3
− 40ζ3

]]
ln2(x) +

[
CF

[
T 2

F

(
140992

243
+ NF

(
182528

243
− 400ζ2

27
− 640ζ3

9

)
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Small and large x limits of a(3)
gg,Q

−728
27

ζ2 −
224

9
ζ3

)
+ CATF

(
−514952

243
+

152ζ4

3
− 21140ζ2

27
− 2576ζ3

9

)]

+CAT 2
F

[
184
27

+ NF

(
656
27
− 32ζ2

27

)
+

464ζ2

27

]
+ C2

ATF

[
−42476

81
− 92ζ4 +

4504ζ2

27

+
64ζ3

3

]
+ C2

F TF

[
−1036

3
− 976ζ4

3
− 58ζ2

3
+

416ζ3

3

]]
ln(x),

a(3),x→1
gg,Q (x) ∝ a(3)

gg,Q,δδ(1− x) + a(3)
gg,Q,plus(x) +

[
−32

27
CAT 2

F (17 + 12NF ) + CACF TF

(
56− 32ζ2

3

)

+C2
ATF

(
9238

81
− 104ζ2

9
+ 16ζ3

)]
ln(1− x) +

[
− 8

27
CAT 2

F (7 + 8NF )

+C2
ATF

(
314
27
− 4ζ2

3

)]
ln2(1− x) +

32
27

C2
ATF ln3(1− x).
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Representations of the OME

The logarithmic parts of (∆)A(3)
Qg were computed in [Behring et al., (2014)], [JB et al. (2021)].

We did not spent efforts to choose the MI basis such that the needed ε-expansion is minimal,
which we could afford in all first order factorizing cases.
N space

Recursions available for all building blocks: N → N + 1.
Asymptotic representations available.
Contour integral around the singularities of the problem at the non-positive real axis.

x space
All constants occurring in the transition t → x can be calculated in terms of ζ-values.
This can be proven analytically by first rationalizing and then calculating the obtained cyclotomic
G-functions.
Separate the δ(1− x) and +-function terms first.
Series representations to 50 terms around x = 0 and x = 1 can be derived for the regular part
analytically (12 digits).
The accuracy can be easily enlarged, if needed.
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a(3)
gg,Q

10-5 10-4 0.001 0.010 0.100 1

-2000

0

2000

4000

6000

8000

x

(1
-

x
)2

x
a

g
g

,Q
(3
)

The non–NF terms of a(3)gg,Q(N) (rescaled) as a function of x . Full line (black): complete result; upper dotted line (red): term

∝ ln(x)/x , BFKL limit; lower dashed line (cyan): small x terms ∝ 1/x ; lower dotted line (blue): small x terms including all ln(x)

terms up to the constant term; upper dashed line (green): large x contribution up to the constant term; dash-dotted line (brown):

complete large x contribution.
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Current summary on F charm
2

An example to show numerical effects: the charm quark contributions to the structure function F2(x ,Q2)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10−5 10−4 10−3 10−2 10−1 1

F
he

av
y

2

x

HS
g ,2/20

HPS
q,2

LNS
q,2

LS
g ,2

LPS
q,2

αs α2
s α3

s

-0.002

-0.001

0

0.001

10−1 1

Allows to strongly reduce the current theory error on mc .
Started ∼ 2009; might be completed this year.
Lots of new algorithms had to be designed; different new function spaces; new analytic calculation
techniques ...
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Conclusions

Contributions to massless & massive OMEs and Wilson coefficients factorizing at 1st order can be
computed in Mellin N space using difference ring techniques as implemented in the package
Sigma.
N-space methods also applicable in the case of non-1st order factorization are more involved and
need further study.
x-space representations are needed also to determine the small x behaviour, since it cannot be
obtained by the N-space methods, because they are related to integer values in N not covered.
The t-resummation of the original N-space expressions is already necessary to perform the IBP
reduction.
The transformation from the continuous variable t to the continuous variable x is possible trough
the optical theorem.
This applies to all 1st order factorizing cases and also to non-1st order factorizing situations,
provided one can derive a closed form solution of the respective equations and perform the
analytic continuation.
This includes also the calculation of various new constants, which might open up a new field for
special numbers, unless these quantities finally reduce to what is known already.
The moments of the master integrals depend on ζ-values only.
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Conclusions

It is most efficient to work with 2F1-solutions in the present examples, because they are most
compact and since everything is known about them.

For numerical representations analytic expansions around x = 0, x = 1/2 and x = 1 suffice, with
∼ 50 terms, (Example: a(3)

Qg ). In some cases further overlapping series expansions have to be
performed.

A(3)
gg,Q has contributions from finite central binomial sums or square-root valued alphabets,

factorizing at 1st order.

Both efficient N- and x-space solutions can be derived which are very fast numerically.
=⇒ QCD analysis.

BFKL-like approaches are shown to utterly fail in describing these quantities.
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