High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

FCC Workshop, Cracow, January 2023

Johannes Blümlein | January 23, 2023

DES'

in collaboration with: J. Ablinger, A. De Freitas, C. Raab and K. Schönwald

[based on: Blümlein, De Freitas, van Neerven, (Nucl. Phys. B 855 (2012) 508-569)]

[Blümlein, De Freitas, Raab, Schönwald (Phys. Lett. B701 (2019) 206-209, Phys. Lett. B801 (2021)

135196, Nucl. Phys. B 956 (2020) 115055)]

[Ablinger, Blümlein, De Freitas, Schönwald (Nucl. Phys. B955 (2020) 115045)]

[Blümlein, De Freitas, Schönwald (Phys. Lett. B816 (2021) 136250)]

Outline

- Motivation
- 2 The Method of Massive Operator Matrix Elements
- Results for the Total Cross-Section
- Results for the Forward-Backward Asymmetry
- Conclusions

Motivation

Motivation

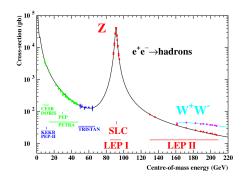
•000

Corrections due to initial state radiation (ISR) can be large, especially due to large logarithmic corrections

$$L = \ln(s/m_e^2) \approx 10.$$

- These corrections are important e.g.
 - for the prediction of the Z-boson peak
 - for $t\bar{t}$ production
 - associated Higgs production through $e^+e^- \rightarrow Z^*H^0$ at future e^+ e^- colliders.
- We extend the known $O(\alpha^2)$ ISR corrections up to $O(\alpha^6 L^5)$, including the first three subleading logarithmic corrections at lower orders.
- We extend the ISR corrections for the forward-backward asymmetry at leading logarithmic order to $O(\alpha^6 L^6)$.

Results for the Total Cross-Section



Previous Calculations

■ 1988: First calculation to $O(\alpha^2)$ for the LEP analysis, through expansion of the phase space integrals (BBN).

[Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))]

- 2012: New calculation up to $O(\alpha^2)$ using the method of massive operator matrix elements. [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]
 - \Rightarrow Calculations do not agree at $O(\alpha^2 L^0)!$
 - Errors in one of the calculations?
 - Breakdown of factorization?
- We revisited the original calculation, doing the expansion in m_e at the latest stage.
 [Blümlein, De Freitas, Raab, Schönwald (Nucl. Phys. B956 (2020))]

Motivation

Result: Process II

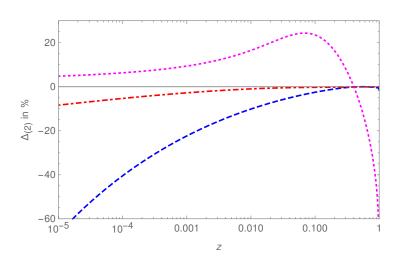
as an example we find the difference term to BBN for process II:

$$\delta_{II} = \frac{8}{3} \int_{0}^{1} \frac{\mathrm{d}y}{y} \sqrt{1 - y} (2 + y) \left[\frac{(1 - z)(1 - (4 - z)z)y}{4z + (1 - z^{2})y} - \frac{1 + z^{2}}{1 - z} \ln \left(1 + \frac{(1 - z)^{2}y}{4z} \right) \right]$$

$$= -\frac{128}{9} \left[3 + \frac{1}{(1 - z)^{3}} - \frac{2}{(1 - z)^{2}} - 2z \right] - 16 \left[1 + \frac{5z}{3} + \frac{8}{9} \frac{1}{(1 - z)^{4}} - \frac{20}{9} \frac{1}{(1 - z)^{3}} + \frac{4}{9} \frac{1}{(1 - z)^{2}} \right] \ln(z) + \frac{8}{3} \frac{1 + z^{2}}{1 - z} \left[\frac{10}{9} - \frac{14}{3} \ln(z) - \ln^{2}(z) \right],$$

- in this case the difference can be attributed to the neglection of initial state electron masses
- in the pure-singlet process a calculation done for massless partons was reused [Schellekens, van Neerven (Phys.Rev. D21 (1980))]
- ⇒ our results agree with the ones obtained using massive OMEs

Recalculation – Numerical Illustration



Relative deviation from BBN of process II (red), process III (blue) and process IV (magenta) contribution in %.

The Method of Massive Operator Matrix Elements

The initial state radiation factorizes from the born cross section:

$$\frac{\mathrm{d}\sigma_{ij}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s} \sum_{l,k} \Gamma_{li}\left(z,\frac{\mu^2}{m_e^2}\right) \otimes \tilde{\sigma}_{lk}\left(z,\frac{s'}{\mu^2}\right) \otimes \Gamma_{kj}\left(z,\frac{\mu^2}{m_e^2}\right) + O\left(\frac{m_e^2}{s}\right) = \frac{\sigma^{(0)}(s')}{s} H_{ij}\left(z,\frac{s}{m_e^2}\right)$$

with z = s'/s, μ the factorization scale, into: $\left[f(z) \otimes g(z) = \int\limits_0^1 \mathrm{d}x_1 \int\limits_0^1 \mathrm{d}x_2 f(x_1) g(x_2) \delta(z - x_1 x_2), f(N) = \int\limits_0^1 \mathrm{d}z \, z^{N-1} f(z) \right]$

- massless (Drell-Yan) cross sections $\tilde{\sigma}_{ij}$ $\left(z, \frac{s'}{\mu^2}\right)$ [Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))] [Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))] [Duhr, Dulat, Mistelberger (Phys. Rev. Lett. 125 (2020))]
- massive operator matrix elements $\Gamma_{ij}\left(z,\frac{\mu^2}{m_e^2}\right)$, which carry all mass dependence [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]

The Method of Massive Operator Matrix Elements

Massless cross sections and massive operator matrix elements obey renormalization group equations:

• massless cross sections $\tilde{\sigma}_{ii}$

$$\left[\left(\frac{\partial}{\partial \lambda} - \beta(a)\frac{\partial}{\partial a}\right)\delta_{kl}\delta_{jm} + \frac{1}{2}\gamma_{kl}(N)\delta_{jm} + \frac{1}{2}\gamma_{jm}(N)\delta_{kl}\right]\tilde{\sigma}_{lj}(N) = 0$$

massive operator matrix elements Γ_{ii}

$$\left[\left(\frac{\partial}{\partial \Lambda} + \beta(a)\frac{\partial}{\partial a}\right)\delta_{jl} + \frac{1}{2}\gamma_{kl}(N)\right]\Gamma_{ll}(N) = 0$$

with $\lambda = \ln(s'/\mu^2)$, $\Lambda = \ln(\mu^2/m_e^2)$, the QED β -function $\beta(a)$ and $a = \alpha/(4\pi)$

Here the usual anomalous dimensions, i.e. Mellin transforms of the splitting functions, contribute:

$$\gamma_{ij}(N) = -\int_0^1 \mathrm{d}z \ z^{N-1} P_{ij}(z)$$

Motivation

The Method of Massive Operator Matrix Elements

The Method of Massive Operator Matrix Elements

$$\frac{\mathrm{d}\sigma_{e^+e^-}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s} H_{e^+e^-}(z,L) = \frac{\sigma^{(0)}(s')}{s} \sum_{i=0}^{\infty} \sum_{k=0}^{i} a^i L^k c_{i,k}$$

The radiators:

$$\begin{split} c_{1,1} &= -\gamma_{ee}^{(o)}, \\ c_{1,0} &= \tilde{\sigma}_{ee}^{(o)} + 2\Gamma_{ee}^{(o)}, \\ c_{2,2} &= \frac{1}{2}\gamma_{ee}^{(o)2} + \frac{\beta_0}{2}\gamma_{ee}^{(o)} + \frac{1}{4}\gamma_{e\gamma}^{(o)}\gamma_{\gamma e}^{(o)}, \\ & \ldots \\ c_{3,1} &= -\gamma_{ee}^{(o)2} - 2\Gamma_{ee}^{(o)2}\gamma_{ee}^{(o)2} - \Gamma_{ee}^{(o)2}\gamma_{e\gamma}^{(o)2} - \gamma_{e\gamma}^{(o)2}\Gamma_{\gamma e}^{(o)2} - \gamma_{e\gamma}^{(o)2}\Gamma_{\gamma e}^{(o)2} - \gamma_{ee}^{(o)2}\Gamma_{ee}^{(o)2} - \gamma_{ee}^{(o)2}\Gamma_{\gamma e}^{(o)2} - \gamma_{ee}^{(o)2}\Gamma_{\gamma e}^{(o)2} - \gamma_{ee}^{(o)2}\Gamma_{\gamma e}^{(o)2} - \gamma_{\gamma e}^{(o)2}\Gamma_{\gamma e}$$

For the first three logarithmic orders we need the following ingredients:

• splitting functions γ_{ii} up to three-loop order

```
[E.G. Floratos, D.A. Ross, C.T. Sachraida (Nucl. Phys. B129 (1977))]
[A. Gonzalez-Arrovo, C. Lopez, F.J. Yndurain (Nucl. Phys. B153 (1979))]
[S. Moch. J. Vermaseren, A. Voot (Nucl. Phys. B 688/691 (2004))]
```

[J. Blümlein, P. Marquard, K. Schönwald, C. Schneider (Nucl. Phys. B 971 (2021))]

• massless (Drell-Yan) cross sections $\tilde{\sigma}_{ii}$ up to two-loop order [Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))] [Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))]

massive operator matrix elements Γ_{ii} up to two-loop order¹ [Blümlein, De Freitas, van Neerven (Nucl. Phys. B855 (2012))]

 $\Rightarrow \Gamma_{\gamma e}$ was only considered up to one-loop order

[Buza, Matiounine, Smith, Migneron, van Neerven (Nucl. Phys. B472 (1996)). Bierenbaum, Blümlein, Klein (Nucl. Phys. B820 (2009)),

Motivation

The Method of Massive Operator Matrix Elements 00000

Results for the Forward-Backward Asymmetry

¹ In the case of massless external states massive operator matrix elements have been considered in the context of DIS.

The Missing Operator Matrix Element $\Gamma_{\gamma e}$

DESY

Analytic Mellin-inversion with HarmonicSums:

$$\begin{split} \Gamma_{\gamma e}^{(1)}(z) &= \frac{P_9}{135z^3} - \frac{320 - 335z + 231z^2}{15z} H_0 + \frac{12 + 23z}{6} H_0^2 + \frac{2 - z}{3} H_0^3 + 32(2 - z) \left(\frac{(2 - z)^2}{3z^2} - H_0 \right) \left(\tilde{H}_{-1} \tilde{H}_0 - \tilde{H}_{0, -1} \right) \\ &- 8(2 - z) H_{0,0,1} - \frac{96 - 190z + 118z^2 - 41z^3}{3z^2} H_1^2 - 32(2 - z) \left(\tilde{H}_{-1} \tilde{H}_0 - \tilde{H}_{0, -1} \right) \tilde{H}_1 \\ &- \left(\frac{2(32 - 48z + 36z^2 - 13z^3)}{3z^2} + 4(2 - z) H_0 \right) H_{0,1} - \left(\frac{2P_{10}}{45z^4} - \frac{2(32 - 48z + 12z^2 + 7z^3)}{3z^2} H_0 \right) H_1 \\ &+ \frac{2(2 - 2z + z^2)}{z} \left(\frac{H_1^3}{3} + 8 H_1 H_{0,1} + 16 \tilde{H}_0 \tilde{H}_{0, -1} - 32 \tilde{H}_{0,0, -1} - 16 H_{0,1,1} + 8 \tilde{H}_0 \zeta_2 \right) + \left(\frac{4(32 - 48z + 24z^2 - 3z^3)}{3z^2} + 8(2 - z) \left(H_0 + 2 \tilde{H}_1 \right) \right) \zeta_2 + \frac{8(12 - 10z + 5z^2)}{z} \zeta_3 \end{split}$$

harmonic polylogarithms of argument z and 1-z ($\tilde{H}(z)=H(1-z)$):

$$H_{a,\vec{b}} = H_{a,\vec{b}}(z) = \int_{0}^{1} d\tau f_{a}(\tau) H_{\vec{b}}(\tau), \quad \text{with} \quad f_{0}(\tau) = \frac{1}{\tau}, \ f_{1}(\tau) = \frac{1}{1-\tau}, \ f_{-1}(\tau) = \frac{1}{1+\tau}$$

Motivation

The Method of Massive Operator Matrix Elements

Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry

The Radiators

$$\frac{\mathrm{d}\sigma_{e^+e^-}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s}H_{e^+e^-}(z,L) = \frac{\sigma^{(0)}(s')}{s}\sum_{i=0}^{\infty}\sum_{k=0}^{i}a^iL^kc_{i,k}$$

- The radiators do not depend on the factorization scale, i.e. no collinear singularities for massive electrons.
- The analytic structures directly translate from the different ingredients.
- Radiators are distributions in z-space:

$$c_{i,j}(z) = c_{i,j}^{\delta}\delta(1-z) + c_{i,j}^{+} + c_{i,j}^{reg}$$

$$\begin{split} c_{3,3}^{\delta} &= \frac{572}{9} - \frac{704}{3}\zeta_2 + \frac{512}{3}\zeta_3, \\ c_{3,3}^{+} &= \left(\frac{5744}{27} - 256\zeta_2\right)\mathcal{D}_0 + \frac{1408}{3}\mathcal{D}_1 + 256\mathcal{D}_2, \\ \mathcal{D}_k &= \left(\frac{\ln^k(1-z)}{1-z}\right)_+, \end{split}$$

$$\begin{split} c_{3,3}^{\mathrm{reg}} &= \left\{ \frac{16 \mathrm{H}_0 P_{104}}{9(z-1)} - \frac{4 P_{131}}{27z} + \frac{8 \big(3-19 z^2\big) \mathrm{H}_0^2}{3(z-1)} \right. \\ &\quad + \left[\frac{16 P_{105}}{9z} - \frac{128 \big(1+z^2\big) \mathrm{H}_0}{z-1} \right] \mathrm{H}_1 - 128 \big(1+z\big) \mathrm{H}_1^2 \\ &\quad - \frac{352}{3} \big(1+z\big) \mathrm{H}_{0,1} + \frac{736}{3} \big(1+z\big) \zeta_2 \right\} \end{split}$$

Motivation

he Method of Massive Operator Matrix Elements

Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry

Conclusions

Numerical Results

	Fixed	width	s dep. width		
	Peak	Width	Peak	Width	
	(MeV)	(MeV)	(MeV)	(MeV)	
$O(\alpha)$ correction	185.638	539.408	181.098	524.978	
$O(\alpha^2L^2)$:	- 96.894	-177.147	- 95.342	-176.235	
$O(\alpha^2 L)$:	6.982	22.695	6.841	21.896	
$O(\alpha^2)$:	0.176	- 2.218	0.174	- 2.001	
$O(\alpha^3L^3)$:	23.265	38.560	22.968	38.081	
$O(\alpha^3L^2)$:	- 1.507	- 1.888	- 1.491	- 1.881	
$O(\alpha^3 L)$:	- 0.152	0.105	- 0.151	- 0.084	
$O(\alpha^4L^4)$:	- 1.857	0.206	- 1.858	0.146	
$O(\alpha^4L^3)$:	0.131	- 0.071	0.132	- 0.065	
$O(\alpha^4L^2)$:	0.048	- 0.001	0.048	0.001	
$O(\alpha^5L^5)$:	0.142	- 0.218	0.144	- 0.212	
$O(\alpha^5L^4)$:	- 0.000	0.020	- 0.001	0.020	
$O(\alpha^5L^3)$:	- 0.008	0.009	- 0.008	0.008	
$O(\alpha^6L^6)$:	- 0.007	0.027	- 0.007	0.027	
$O(\alpha^6L^5)$:	- 0.001	0.000	- 0.001	0.000	

Table 1: Shifts in the Z-mass and the width due to the different contributions to the ISR QED radiative corrections for a fixed width of $\Gamma_Z=2.4952$ GeV and s-dependent width using $M_Z=91.1876$ GeV and s_0 = $4m_c^2$

	L^6	L^5	L^4	L^3	L^2	L	L^0
$O(\alpha)$							
$O(\alpha^2)$							
$\mathcal{O}(lpha^3)$						\checkmark	-
$\mathcal{O}(\alpha^4)$				$\sqrt{}$		-	-
$\mathcal{O}(lpha^5)$			$\sqrt{}$		-	-	-
$\mathcal{O}(lpha^{6})$			-	-	-	-	-

Application to the Forward-Backward Asymmetry A_{FB}

■ The forward-backward asymmetry is defined by:

$$A_{FB}(s) = rac{\sigma_F(s) - \sigma_B(s)}{\sigma_F(s) + \sigma_B(s)},$$

with

$$\sigma_F(s) = 2\pi \int\limits_0^1 \mathrm{d} \cos(heta) rac{\mathrm{d} \sigma}{\mathrm{d} \Omega}, \qquad \qquad \sigma_B(s) = 2\pi \int\limits_1^0 \mathrm{d} \cos(heta) rac{\mathrm{d} \sigma}{\mathrm{d} \Omega},$$

and θ the angle between the incoming e^- and outgoing μ^- .

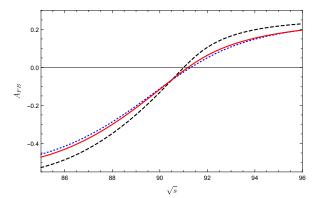
■ The technique of radiators can also be used for A_{FB}: [Böhm et al. (LEP Physics Workshop 1989, p.203–234)]

$$A_{FB}(s) = \frac{1}{\sigma_F(s) + \sigma_B(s)} \int_{z_0}^1 dz \frac{4z}{(1+z)^2} H_{FB}(z) \sigma_{FB}^{(0)}(zs)$$

Due to the angle dependence the radiators are not the same as in the total cross-section.

Motivation

Application to A_{FB} – Numerical Results



 A_{FB} evaluated at $s_- = (87.9 \,\text{GeV})^2$, M_Z^2 and $s_+ = (94.3 \,\text{GeV})^2$ for the cut

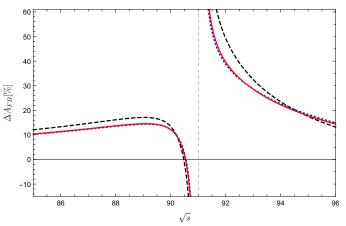
	A(a-)	$A_{FB}(M_Z^2)$	4(0.)
	$A_{FB}(s_{-})$	AFB(MZ)	$A_{FB}(s_+)$
$O(\alpha^0)$	-0.3564803	0.0225199	0.2052045
$+\mathcal{O}(\alpha L^1)$	-0.2945381	-0.0094232	0.1579347
$+\mathcal{O}(\alpha L^0)$	-0.2994478	-0.0079610	0.1611962
$+\mathcal{O}(\alpha^2L^2)$	-0.3088363	0.0014514	0.1616887
$+\mathcal{O}(\alpha^3L^3)$	-0.3080578	0.0000198	0.1627252
$+\mathcal{O}(\alpha^4L^4)$	-0.3080976	0.0001587	0.1625835
$+\mathcal{O}(\alpha^5L^5)$	-0.3080960	0.0001495	0.1625911
$+\mathcal{O}(\alpha^6L^6)$	-0.3080960	0.0001499	0.1625911

 A_{FB} and its initial state QED corrections as a function of \sqrt{s} . Black (dashed) the Born approximation, blue (dotted) the $O(\alpha)$ improved approximation, red (full) also including the leading-log improvement up to $O(\alpha^6)$ for $s'/s \ge 4m_\tau^2/s$.

The Method of Massive Operator Matrix Elements

Results for the Forward-Backward Asymmetry

Application to A_{FB} – Numerical Results

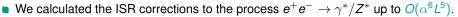


$$\Delta A_{FB} = 1 - \frac{A_{FB}^{(I)}}{A_{FB}^{(0)}}$$

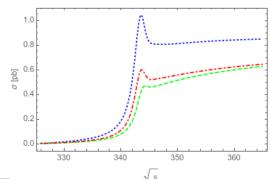
where (*I*) denotes the order of ISR-corrections considered

 ΔA_{FB} in % as a function of \sqrt{s} . Black (dashed) the $O(\alpha)$ improved approximation, blue (dotted) the $O(\alpha^2 L^2)$ improved approximation, red (full) also including the leading-log improvement up to $O(\alpha^6)$ for $s'/s \ge 4m_\tau^2/s$.

Conclusions



- This includes the first (up to) three logarithmic terms at lower orders.
- We calculated the leading logarithmic ISR corrections to the forward-backward asymmetry up to $O(\alpha^6 L^6)$.
- The corrections can become important at future e^+e^- machines running at high luminosities.
- The radiators can be used for various processes like $e^+e^- \to t\bar{t}$ and $e^+e^- \to ZH$.



blue: $O(\alpha^0)$, obtained with QQbarThreshold [Beneke, Kiyo, Maier, Piclum (Comp. Phys. Com. (2009))]; green: $O(\alpha^1)$; red: $O(\alpha^2)$

Outlook

- Provide the QED 'PDFs', not only radiators.
- The massless Drell-Yan cross sections are known up to $O(\alpha^3)$ ⇒ An extension to the first four logarithmic orders is possible, but needs the calculation the operator matrix elements up to $O(\alpha^3)$ and the 4-loop splitting functions.
- The technique can be extended to subleading logarithmic corrections of A_{FB} .
- The method can be extended to QCD to study e.g. the heavy-quark initiated Drell-Yan process.