
Introduction to Mathematica

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, Introduction to Mathematica – p.1

Expert Systems

In technical terms, Mathematica is an Expert System.
Knowledge is added in form of Transformation Rules.
An expression is transformed until no more rules apply.

Example:
myAbs[x_] := x /; NonNegative[x]

myAbs[x_] := -x /; Negative[x]

We get:
myAbs[3] ☞ 3

myAbs[-5] ☞ 5

myAbs[2 + 3 I] ☞ myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x] ☞ myAbs[x]

— no match either

T. Hahn, Introduction to Mathematica – p.2

Immediate and Delayed Assignment

Transformations can either be

• added “permanently” in form of Definitions,

norm[vec_] := Sqrt[vec . vec]

norm[{1, 0, 2}] ☞ Sqrt[5]

• applied once using Rules:

a + b + c /. a -> 2 c ☞ b + 3 c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -> Random[] ☞ {0.823919, 0.823919}

{r, r} /. r :> Random[] ☞ {0.356028, 0.100983}

Mathematica is one of those programs, like TEX, where you wish you’d gotten a US keyboard for all those braces and brackets.

T. Hahn, Introduction to Mathematica – p.3

Almost everything is a List

All Mathematica objects are either Atomic, e.g.

Head[133] ☞ Integer

Head[a] ☞ Symbol

or (generalized) Lists with a Head and Elements:

expr = a + b

FullForm[expr] ☞ Plus[a, b]

Head[expr] ☞ Plus

expr[[0]] ☞ Plus — same as Head[expr]

expr[[1]] ☞ a

expr[[2]] ☞ b

T. Hahn, Introduction to Mathematica – p.4

List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:
array = Table[Random[], {10^7}];

test1 := Block[{sum = 0},

Do[sum += array[[i]], {i, Length[array]}];

sum]

test2 := Apply[Plus, array]

Here are the timings:
Timing[test1][[1]] ☞ 31.63 Second

Timing[test2][[1]] ☞ 3.04 Second

T. Hahn, Introduction to Mathematica – p.5

Map, Apply, and Pure Functions

Map applies a function to all elements of a list:
Map[f, {a, b, c}] ☞ {f[a], f[b], f[c]}

f /@ {a, b, c} ☞ {f[a], f[b], f[c]} — short form

Apply exchanges the head of a list:
Apply[Plus, {a, b, c}] ☞ a + b + c

Plus @@ {a, b, c} ☞ a + b + c — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} ☞ {5, 9}

The # (same as #1) represents the first argument, and the &

defines everything to its left as the pure function.

T. Hahn, Introduction to Mathematica – p.6

List Operations

Flatten removes all sub-lists:

Flatten[f[x, f[y], f[f[z]]]] ☞ f[x, y, z]

Sort and Union sort a list. Union also removes duplicates:

Sort[{3, 10, 1, 8}] ☞ {1, 3, 8, 10}

Union[{c, c, a, b, a}] ☞ {a, b, c}

Prepend and Append add elements at the front or back:

Prepend[r[a, b], c] ☞ r[c, a, b]

Append[r[a, b], c] ☞ r[a, b, c]

Insert and Delete insert and delete elements:

Insert[h[a, b, c], x, {2}] ☞ h[a, x, b, c]

Delete[h[a, b, c], {2}] ☞ h[a, c]

T. Hahn, Introduction to Mathematica – p.7

Patterns

One of the most useful features is Pattern Matching:
_ — matches one object

__ — matches one or more objects

___ — matches zero or more objects

x_ — named pattern (for use on the r.h.s.)

x_h — pattern with head h

x_:1 — default value

x_?NumberQ — conditional pattern

x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}

Pair[p_Plus, j_] := Pair[#, j]& /@ p

Pair[n_?NumberQ i_, j_] := n Pair[i, j]

T. Hahn, Introduction to Mathematica – p.8

Attributes

Attributes characterize a function’s behaviour before and
while it is subjected to pattern matching. For example,

Attributes[f] = {Listable}

f[l_List] := g[l]

f[{1, 2}] ☞ {f[1], f[2]} — definition is never seen

Important attributes: Flat, Orderless, Listable,
HoldAll, HoldFirst, HoldRest.

The Hold... attributes are needed to pass variables by
reference:

Attributes[listadd] = {HoldFirst}

listadd[x_, other__] := x = Flatten[{x, other}]

This would not work if x were expanded before invoking
listadd, i.e. passed by value.

T. Hahn, Introduction to Mathematica – p.9

Memorizing Values

For longer computations, it may be desirable to ‘remember’
values once computed. For example:

fib[1] = fib[2] = 1

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

fib[4] ☞ 3

?fib ☞ Global‘fib

fib[1] = 1

fib[2] = 1

fib[3] = 2

fib[4] = 3

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

Note that Mathematica places more specific definitions before
more generic ones.

T. Hahn, Introduction to Mathematica – p.10

Decisions

Mathematica’s If Statement has three entries: for True, for
False, but also for Undecidable. For example:

If[8 > 9, 1, 2] ☞ 2

If[a > b, 1, 2] ☞ If[a > b, 1, 2]

If[a > b, 1, 2, 3] ☞ 3

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ,
MatchQ, OrderedQ, . . . These functions have no undecided
state: in case of doubt they return False.

Conditional Patterns are usually faster:

good[a_, b_] := If[TrueQ[a > b], 1, 2]

— TrueQ removes ambiguity

better[a_, b_] := 1 /; a > b

better[a_, b_] = 2
T. Hahn, Introduction to Mathematica – p.11

Equality

Just as with decisions, there are several types of equality,
decidable and undecidable:

a == b ☞ a == b

a === b ☞ False

a == a ☞ True

a === a ☞ True

The full name of ‘===’ is SameQ and works as the Q indicates:
in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ‘==’:

Solve[x^2 == 1, x] ☞ {{x -> -1}, {x -> 1}}

Needless to add, ‘=’ is a definition and quite different:

x = 3 — assign 3 to x

T. Hahn, Introduction to Mathematica – p.12

Selecting Elements

Select selects elements fulfilling a criterium:

Select[{1, 2, 3, 4, 5}, # > 3 &] ☞ {4, 5}

Cases selects elements matching a pattern:

Cases[{1, a, f[x]}, _Symbol] ☞ {a}

Using Levels is generally a very fast way to extract parts:

list = {f[x], 4, {g[y], h}}

Depth[list] ☞ 4 — list is 4 levels deep (0, 1, 2, 3)

Level[list, {1}] ☞ {f[x], 4, {g[y], h}}

Level[list, {2}] ☞ {x, g[y], h}

Level[list, {3}] ☞ {y}

Level[list, {-1}] ☞ {x, 4, y, h}

Cases[expr, _Symbol, {-1}]//Union

— find all variables in expr T. Hahn, Introduction to Mathematica – p.13

Mathematical Functions

Mathematica is equipped with a large set of mathematical
functions, both for symbolic and numeric operations.
Some examples:

Integrate[x^2, {x,3,5}] — integral

D[f[x], x] — derivative

Sum[i, {i,50}] — sum

Series[Sin[x], {x,1,5}] — series expansion

Simplify[(x^2 - x y)/x] — simplify

Together[1/x + 1/y] — put on common denominator

Inverse[mat] — matrix inverse

Eigenvalues[mat] — eigenvalues

PolyLog[2, 1/3] — polylogarithm

LegendreP[11, x] — Legendre polynomial

Gamma[.567] — Gamma function

T. Hahn, Introduction to Mathematica – p.14

Graphics

Mathematica has formidable graphics capabilities:

Plot[ArcTan[x], {x, 0, 2.5}]

ParametricPlot[{Sin[x], 2 Cos[x]}, {x, 0, 2 Pi}]

Plot3D[1/(x^2 + y^2), {x, -1, 1}, {y, -1, 1}]

ContourPlot[x y, {x, 0, 10}, {y, 0, 10}]

Output can be saved to a file with Export:

plot = Plot[Abs[Zeta[1/2 + x I]], {x, 0, 50}]

Export["zeta.eps", plot, "EPS"]

Hint: To get a high-quality plot with proper LATEX labels, don’t
waste your time fiddling with the Plot options. Use the
psfrag LATEX package.

T. Hahn, Introduction to Mathematica – p.15

Numerics

Mathematica can express Exact Numbers, e.g.

Sqrt[2], Pi, 27
4

It can also do Arbitrary-precision Arithmetic, e.g.

N[Erf[28/33], 25] ☞ 0.7698368826185349656257148

But: Exact or arbitrary-precision arithmetic is fairly slow!
Mathematica uses Machine-precision Reals for fast arithmetic.

N[Erf[28/33]] ☞ 0.769836882618535

Arrays of machine-precision reals are internally stored as
Packed Arrays (this is invisible to the user) and in this form
attain speeds close to compiled languages on certain
operations, e.g. eigenvalues of a large matrix.

T. Hahn, Introduction to Mathematica – p.16

Compiled Functions

Mathematica can ‘compile’ certain functions for efficiency.
This is not compilation into assembler language, but rather a
strong typing of an expression such that intermediate data
types do not have to be determined dynamically.

fun[x_] := Exp[-((x - 3)^2/5)]

cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]

time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]

time[fun] ☞ 2.4 Second

time[cfun] ☞ 0.43 Second

Compile is implicit in many numerical functions, e.g. in Plot.

In a similar manner, Dispatch hashes long lists of rules
beforehand, to make the actual substitution faster.

T. Hahn, Introduction to Mathematica – p.17

Blocks and Modules

Block implements Dynamical Scoping
A local variable is known everywhere, but only for as long as the block
executes (“temporal localization”).

Module implements Lexical Scoping
A local variable is known only in the block it is defined in (“spatial
localization”). This is how scoping works in most high-level languages.

printa := Print[a]

a = 7

btest := Block[{a = 5}, printa]

mtest := Module[{a = 5}, printa]

btest ☞ 5

mtest ☞ 7

T. Hahn, Introduction to Mathematica – p.18

DownValues and UpValues

Definitions are usually assigned to the symbol being defined:
this is called DownValue.

For seldomly used definitions, it is better to assign the
definition to the next lower level: this is an UpValue.

x/: Plus[x, y] = z

?x ☞ Global‘x

x /: x + y = z

This is better than assigning to Plus directly, because Plus is
a very common operation.
In other words, Mathematica “looks” one level inside each
object when working off transformations.

T. Hahn, Introduction to Mathematica – p.19

Output Forms

Mathematica knows some functions to be Output Forms.
These are used to format output, but don’t “stick” to the
result:

{{1, 2}, {3, 4}}//MatrixForm ☞

(
1 2
3 4

)

Head[%] ☞ List — not MatrixForm

Some important output forms:
InputForm, FullForm, Shallow, MatrixForm, TableForm,
TeXForm, CForm, FortranForm.

TeXForm[alpha/(4 Pi)] ☞ \frac{\alpha}{4\pi}

CForm[alpha/(4 Pi)] ☞ alpha/(4.*Pi)

FullForm[alpha/(4 Pi)]

☞ Times[Rational[1, 4], alpha, Power[Pi, -1]]

T. Hahn, Introduction to Mathematica – p.20

MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

In-depth tutorial: http://library.wolfram.com/infocenter/TechNotes/174

T. Hahn, Introduction to Mathematica – p.21

Summary

• Mathematica makes it wonderfully easy, even for fairly
unskilled users, to manipulate expressions.

• Most functions you will ever need are already built in.
Many third-party packages are available at MathSource,
http://library.wolfram.com/infocenter/MathSource.

• When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.
Wrong: FullSimplify[veryLongExpression].

• Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.
For example, in numerical functions, Mathematica
usually selects the algorithm automatically, which may
or may not be a good thing.

T. Hahn, Introduction to Mathematica – p.22

Books

• S. Wolfram, The Mathematica Book (“The Bible”).
Same as online help.

• M. Trott, The Mathematica Guidebook

. The Mathematica Guidebook for Programming

. The Mathematica Guidebook for Graphics

. The Mathematica Guidebook for Numerics

. The Mathematica Guidebook for Symbolics

• R. Maeder, Programming in Mathematica

• Wolfram also sponsors MathWorld, “the web’s most
extensive mathematics resource,” at
http://mathworld.wolfram.com.

T. Hahn, Introduction to Mathematica – p.23

	Expert Systems
	Immediate and Delayed Assignment
	Almost everything is a List
	List-oriented Programming
	Map, Apply, and Pure Functions
	List Operations
	Patterns
	Attributes
	Memorizing Values
	Decisions
	Equality
	Selecting Elements
	Mathematical Functions
	Graphics
	Numerics
	Compiled Functions
	Blocks and Modules
	DownValues and UpValues
	Output Forms
	MathLink
	Summary
	Books

