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Expert Systems

In technical terms, Mathematica is an Expert System.
Knowledge is added in form of Transformation Rules.
An expression is transformed until no more rules apply.

Example:
myAbs[x_] := x /; NonNegative[x]

myAbs[x_] := -x /; Negative[x]

We get:
myAbs[3] ☞ 3

myAbs[-5] ☞ 5

myAbs[2 + 3 I] ☞ myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x] ☞ myAbs[x]

— no match either
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Immediate and Delayed Assignment

Transformations can either be

• added “permanently” in form of Definitions,

norm[vec_] := Sqrt[vec . vec]

norm[{1, 0, 2}] ☞ Sqrt[5]

• applied once using Rules:

a + b + c /. a -> 2 c ☞ b + 3 c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -> Random[] ☞ {0.823919, 0.823919}

{r, r} /. r :> Random[] ☞ {0.356028, 0.100983}

Mathematica is one of those programs, like TEX, where you wish you’d gotten a US keyboard for all those braces and brackets.
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Almost everything is a List

All Mathematica objects are either Atomic, e.g.

Head[133] ☞ Integer

Head[a] ☞ Symbol

or (generalized) Lists with a Head and Elements:

expr = a + b

FullForm[expr] ☞ Plus[a, b]

Head[expr] ☞ Plus

expr[[0]] ☞ Plus — same as Head[expr]

expr[[1]] ☞ a

expr[[2]] ☞ b

T. Hahn, Introduction to Mathematica – p.4



List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:
array = Table[Random[], {10^7}];

test1 := Block[ {sum = 0},

Do[ sum += array[[i]], {i, Length[array]} ];

sum ]

test2 := Apply[Plus, array]

Here are the timings:
Timing[test1][[1]] ☞ 31.63 Second

Timing[test2][[1]] ☞ 3.04 Second
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Map, Apply, and Pure Functions

Map applies a function to all elements of a list:
Map[f, {a, b, c}] ☞ {f[a], f[b], f[c]}

f /@ {a, b, c} ☞ {f[a], f[b], f[c]} — short form

Apply exchanges the head of a list:
Apply[Plus, {a, b, c}] ☞ a + b + c

Plus @@ {a, b, c} ☞ a + b + c — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} ☞ {5, 9}

The # (same as #1) represents the first argument, and the &

defines everything to its left as the pure function.
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List Operations

Flatten removes all sub-lists:

Flatten[f[x, f[y], f[f[z]]]] ☞ f[x, y, z]

Sort and Union sort a list. Union also removes duplicates:

Sort[{3, 10, 1, 8}] ☞ {1, 3, 8, 10}

Union[{c, c, a, b, a}] ☞ {a, b, c}

Prepend and Append add elements at the front or back:

Prepend[r[a, b], c] ☞ r[c, a, b]

Append[r[a, b], c] ☞ r[a, b, c]

Insert and Delete insert and delete elements:

Insert[h[a, b, c], x, {2}] ☞ h[a, x, b, c]

Delete[h[a, b, c], {2}] ☞ h[a, c]
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Patterns

One of the most useful features is Pattern Matching:
_ — matches one object

__ — matches one or more objects

___ — matches zero or more objects

x_ — named pattern (for use on the r.h.s.)

x_h — pattern with head h

x_:1 — default value

x_?NumberQ — conditional pattern

x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}

Pair[p_Plus, j_] := Pair[#, j]& /@ p

Pair[n_?NumberQ i_, j_] := n Pair[i, j]
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Attributes

Attributes characterize a function’s behaviour before and
while it is subjected to pattern matching. For example,

Attributes[f] = {Listable}

f[l_List] := g[l]

f[{1, 2}] ☞ {f[1], f[2]} — definition is never seen

Important attributes: Flat, Orderless, Listable,
HoldAll, HoldFirst, HoldRest.

The Hold... attributes are needed to pass variables by
reference:

Attributes[listadd] = {HoldFirst}

listadd[x_, other__] := x = Flatten[{x, other}]

This would not work if x were expanded before invoking
listadd, i.e. passed by value.

T. Hahn, Introduction to Mathematica – p.9



Memorizing Values

For longer computations, it may be desirable to ‘remember’
values once computed. For example:

fib[1] = fib[2] = 1

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

fib[4] ☞ 3

?fib ☞ Global‘fib

fib[1] = 1

fib[2] = 1

fib[3] = 2

fib[4] = 3

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

Note that Mathematica places more specific definitions before
more generic ones.
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Decisions

Mathematica’s If Statement has three entries: for True, for
False, but also for Undecidable. For example:

If[8 > 9, 1, 2] ☞ 2

If[a > b, 1, 2] ☞ If[a > b, 1, 2]

If[a > b, 1, 2, 3] ☞ 3

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ,
MatchQ, OrderedQ, . . . These functions have no undecided
state: in case of doubt they return False.

Conditional Patterns are usually faster:

good[a_, b_] := If[TrueQ[a > b], 1, 2]

— TrueQ removes ambiguity

better[a_, b_] := 1 /; a > b

better[a_, b_] = 2
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Equality

Just as with decisions, there are several types of equality,
decidable and undecidable:

a == b ☞ a == b

a === b ☞ False

a == a ☞ True

a === a ☞ True

The full name of ‘===’ is SameQ and works as the Q indicates:
in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ‘==’:

Solve[x^2 == 1, x] ☞ {{x -> -1}, {x -> 1}}

Needless to add, ‘=’ is a definition and quite different:

x = 3 — assign 3 to x
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Selecting Elements

Select selects elements fulfilling a criterium:

Select[{1, 2, 3, 4, 5}, # > 3 &] ☞ {4, 5}

Cases selects elements matching a pattern:

Cases[{1, a, f[x]}, _Symbol] ☞ {a}

Using Levels is generally a very fast way to extract parts:

list = {f[x], 4, {g[y], h}}

Depth[list] ☞ 4 — list is 4 levels deep (0, 1, 2, 3)

Level[list, {1}] ☞ {f[x], 4, {g[y], h}}

Level[list, {2}] ☞ {x, g[y], h}

Level[list, {3}] ☞ {y}

Level[list, {-1}] ☞ {x, 4, y, h}

Cases[expr, _Symbol, {-1}]//Union
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Mathematical Functions

Mathematica is equipped with a large set of mathematical
functions, both for symbolic and numeric operations.
Some examples:

Integrate[x^2, {x,3,5}] — integral

D[f[x], x] — derivative

Sum[i, {i,50}] — sum

Series[Sin[x], {x,1,5}] — series expansion

Simplify[(x^2 - x y)/x] — simplify

Together[1/x + 1/y] — put on common denominator

Inverse[mat] — matrix inverse

Eigenvalues[mat] — eigenvalues

PolyLog[2, 1/3] — polylogarithm

LegendreP[11, x] — Legendre polynomial

Gamma[.567] — Gamma function
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Graphics

Mathematica has formidable graphics capabilities:

Plot[ArcTan[x], {x, 0, 2.5}]

ParametricPlot[{Sin[x], 2 Cos[x]}, {x, 0, 2 Pi}]

Plot3D[1/(x^2 + y^2), {x, -1, 1}, {y, -1, 1}]

ContourPlot[x y, {x, 0, 10}, {y, 0, 10}]

Output can be saved to a file with Export:

plot = Plot[Abs[Zeta[1/2 + x I]], {x, 0, 50}]

Export["zeta.eps", plot, "EPS"]

Hint: To get a high-quality plot with proper LATEX labels, don’t
waste your time fiddling with the Plot options. Use the
psfrag LATEX package.
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Numerics

Mathematica can express Exact Numbers, e.g.

Sqrt[2], Pi, 27
4

It can also do Arbitrary-precision Arithmetic, e.g.

N[Erf[28/33], 25] ☞ 0.7698368826185349656257148

But: Exact or arbitrary-precision arithmetic is fairly slow!
Mathematica uses Machine-precision Reals for fast arithmetic.

N[Erf[28/33]] ☞ 0.769836882618535

Arrays of machine-precision reals are internally stored as
Packed Arrays (this is invisible to the user) and in this form
attain speeds close to compiled languages on certain
operations, e.g. eigenvalues of a large matrix.
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Compiled Functions

Mathematica can ‘compile’ certain functions for efficiency.
This is not compilation into assembler language, but rather a
strong typing of an expression such that intermediate data
types do not have to be determined dynamically.

fun[x_] := Exp[-((x - 3)^2/5)]

cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]

time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]

time[fun] ☞ 2.4 Second

time[cfun] ☞ 0.43 Second

Compile is implicit in many numerical functions, e.g. in Plot.

In a similar manner, Dispatch hashes long lists of rules
beforehand, to make the actual substitution faster.
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Blocks and Modules

Block implements Dynamical Scoping
A local variable is known everywhere, but only for as long as the block
executes (“temporal localization”).

Module implements Lexical Scoping
A local variable is known only in the block it is defined in (“spatial
localization”). This is how scoping works in most high-level languages.

printa := Print[a]

a = 7

btest := Block[{a = 5}, printa]

mtest := Module[{a = 5}, printa]

btest ☞ 5

mtest ☞ 7
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DownValues and UpValues

Definitions are usually assigned to the symbol being defined:
this is called DownValue.

For seldomly used definitions, it is better to assign the
definition to the next lower level: this is an UpValue.

x/: Plus[x, y] = z

?x ☞ Global‘x

x /: x + y = z

This is better than assigning to Plus directly, because Plus is
a very common operation.
In other words, Mathematica “looks” one level inside each
object when working off transformations.
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Output Forms

Mathematica knows some functions to be Output Forms.
These are used to format output, but don’t “stick” to the
result:

{{1, 2}, {3, 4}}//MatrixForm ☞

(
1 2
3 4

)

Head[%] ☞ List — not MatrixForm

Some important output forms:
InputForm, FullForm, Shallow, MatrixForm, TableForm,
TeXForm, CForm, FortranForm.

TeXForm[alpha/(4 Pi)] ☞ \frac{\alpha}{4\pi}

CForm[alpha/(4 Pi)] ☞ alpha/(4.*Pi)

FullForm[alpha/(4 Pi)]

☞ Times[Rational[1, 4], alpha, Power[Pi, -1]]
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MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

In-depth tutorial: http://library.wolfram.com/infocenter/TechNotes/174
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Summary

• Mathematica makes it wonderfully easy, even for fairly
unskilled users, to manipulate expressions.

• Most functions you will ever need are already built in.
Many third-party packages are available at MathSource,
http://library.wolfram.com/infocenter/MathSource.

• When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.
Wrong: FullSimplify[veryLongExpression].

• Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.
For example, in numerical functions, Mathematica
usually selects the algorithm automatically, which may
or may not be a good thing.
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Books

• S. Wolfram, The Mathematica Book (“The Bible”).
Same as online help.

• M. Trott, The Mathematica Guidebook

. The Mathematica Guidebook for Programming

. The Mathematica Guidebook for Graphics

. The Mathematica Guidebook for Numerics

. The Mathematica Guidebook for Symbolics

• R. Maeder, Programming in Mathematica

• Wolfram also sponsors MathWorld, “the web’s most
extensive mathematics resource,” at
http://mathworld.wolfram.com.
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