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Collider-physics ≡ perturbative QCD

1. Precise predictions for hard pp processes involving
“standard particles" like W, Z, jets, top, Higgs

NNLO partonic cross sections
- few particles, but high order

2. Predictions for multiparticle final states that occur at a high
rate and form background to New Physics

New methods for computing tree-amplitudes
- many particles, but low order
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1. Precise Predictions
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Hard processes in perturbative QCD

Example: inclusive deep-inelastic scattering (DIS)

e

f
p
i

cai

γ∗(q)

p(P )

i(ξP )

Kinematic variables

Q2 = −q2

x = Q2/(2P ·q)

Lowest order : x = ξ

Structure functions Fa [up to O(1/Q2)]

F p
a (x,Q2) =

∑

i

[

ca,i(αs(µ
2), µ2/Q2) ⊗ fp

i (µ2)
]

(x)

Coefficient functions ca,i, renormalization/factorization scale µ
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Hard processes in perturbative QCD

Parton distributions fi: evolution equations

d

d ln µ2
fi(ξ, µ

2) =
∑

k

[

Pik(αs(µ
2)) ⊗ fk(µ2)

]

(ξ)

Initial conditions incalculable in pert. QCD.

Splitting functions P , Coefficient functions ca

P = αs P (0) + α2
s P (1) + α3

s P (2) + . . .

ca = αna

s

[

c(0)
a + αs c(1)

a + α2
s c(2)

a + . . .
]

NLO: standard approximation
NNLO: new emerging standard

Moch, Vermaseren, Vogt
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The running coupling in perturbative QCD

dαs/d ln µ2 = −β0 α2
s − β1 α3

s − β2 α4
s − β3 α5

s − . . .

Four-loop coeff.:
van Ritbergen, Vermaseren, Larin; Czakon
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Parton evolution from HERA to LHC

Kinematics: parton momenta ξ− < ξ < 1 probed

1/ξ−

Q2 (GeV2)

ξ− = M2/s
Q = M

fixed
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HERA → LHC:
Q2 evolution across up to three orders of magnitude
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Parton evolution at large x

A(N) =
∫ 1

0
dx xN−1A(x) . Non-singlet : u+ū − (d+d̄) etc
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Parton evolution at large x

A(N) =
∫ 1

0
dx xN−1A(x) . Non-singlet : u+ū − (d+d̄) etc
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 d ln Q2

αS = 0.2, Nf = 4-0.4
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Moch, Vermaseren, Vogt

Perturbative expansion very benign: expect < 1% beyond NNLO
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Parton evolution at small x

Scale derivatives of quark and gluon distributions at Q2 ≈ 30

GeV2
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Parton evolution at small x

Scale derivatives of quark and gluon distributions at Q2 ≈ 30

GeV2

-0.4

-0.2

0

0.2

0.4

10
-5

10
-4

10
-3

10
-2

10
-1

1x

d ln q / d ln Q2

LO
NLO
NNLO

x

d ln g / d ln Q2

αS = 0.2,  Nf = 4-0.4

-0.2

0

0.2

0.4

10
-5

10
-4

10
-3

10
-2

10
-1

1

Moch, Vermaseren, Vogt

Expansion very stable except for very small momenta x <
∼ 10−4
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Higgs boson production at the LHC
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Higgs boson production at the LHC

1

10

   120    160    200    240    280    

σ(pp→H+X) [pb]

MH [GeV]

LO
NLO
NNLO

√s = 14 TeV

Total cross section
Harlander, Kilgore; Anastasiou, Melnikov, Petriello; . . .

Fully differential
Anastasiou, Melnikov, Petriello

NNLO needed for reliable predictions
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Gauge boson production at the LHC
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Gauge boson production at the LHC

Gold-plated process
Anastasiou, Dixon, Melnikov, Petriello

NNLO perturbative accuracy better than 1%
⇒ use to determine parton-parton luminosities at the LHC
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Jet production at NNLO

pp → jet+X requires matrix elements for
2 → 2 at two-loops, 2 → 3 at one-loop and 2 → 4 at
tree-level
Two-loop amplitudes solved in past five years thanks to

Smirnov, Tausk

Techniques for handling infrared singularities
Phase-space sector decomposition

Binoth, Heinrich; Anastasiou, Melnikov, Petriello

Subtraction terms
Kosower; Weinzierl; Gehrmann-De Ridder, Gehrmann + NG; . . .

First NNLO results for jets in e+e− annihilation
Leading jet energy distribution in e+e− → 2 jets

Anastasiou, Melnikov, Petriello

C3
F part of first moment of Thrust distribution

Gehrmann-De Ridder, Gehrmann + NGPrecision Phenomenology and Collider Physics – p.16



2. Multiparticle
Production
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Multiparticle production

In many cases the backgrounds to New Physics are standard
model multiparticle final states
⇒ Whole raft of automated tree-level packages for generating
cross section

e.g. MadEvent, ALPGEN, HELAC/PHEGAS, CompHEP, GRACE, . . .

Example: Multi-jet production at the LHC using HELAC/PHEGAS
Draggiotis, Kleiss, Papadopoloulos

# of jets 2 3 4 5 6 7 8

# of dist.processes 10 14 28 36 64 78 130

total # of processes 126 206 621 861 1862 2326 4342

σ(nb) - 91.41 6.54 0.458 0.030 0.0022 0.00021

% Gluonic - 45.7 39.2 35.7 35.1 33.8 26.6

Sizeable cross sections for multi-jet events

Large uncertainty since σ(n jets) ∼ αn
s
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Multiparticle production

The number of tree Feynman diagrams for an n gluon process
increases very quickly with n

n diagrams

4 4

5 25

6 220

7 2485

8 34300

9 559405

10 10525900

⇒ Feynman diagram evaluation is very inefficient for many legs
- too many diagrams, terms per diagram, kinematic variables
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Insight from Twistor Space

In a recent paper Witten made a striking proposal to relate
perturbative gauge theory amplitudes to topological string
theory in twistor space

Witten, hep-th/0312171

⇒ Advance in calculating tree amplitudes in massless gauge
theories:

Cachazo, Svrcek and Witten, hep-th/0403047

Amplitudes constructed from scalar propagators and
tree-level maximal helicity violating (MHV) amplitudes
which are interpreted as new scalar vertices

⇒ New type of on-shell recursion relations
Britto, Cachazo and Feng, hep-th/0412308

⇒ Recent developments in computing one-loop amplitudes in
N = 4 SuperYang Mills theory (as well as N = 1 and
maybe even QCD) Precision Phenomenology and Collider Physics – p.20



Colour Ordered Amplitudes

An(1, . . . , n) =
∑

perms

Tr(T a1 . . . T an)An(1, . . . , n)

Colour-stripped amplitudes An: cyclically ordered permutations

Order of external gluons fixed

The subamplitudes An are
(a) gauge invariant
(b) have nice properties in the in-
frared limits.

PSfrag replacements

1

2

3
4

5
6
7
8

n

Can reconstruct the full amplitude An from An.
In the large N limit,

|An(1, . . . , n)|2 ∼ Nn−2(N2 − 1)
∑

perms

|An(1, . . . , n)|2

Precision Phenomenology and Collider Physics – p.21



Colour Ordered Feynman Rules

i ((pµ3

1 − pµ3

2 )gµ1µ2 + (pµ1

2 − pµ1

3 )gµ2µ3 + (pµ2

3 − pµ2

1 )gµ3µ1)

−i (gµ1µ2gµ3µ4 + gµ1µ4gµ3µ2 − 2gµ1µ3gµ2µ4)

Only calculate diagrams with cyclic colour ordering

Example:

A
5

i.e. 10 diagrams rather than 25
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Power of colour ordering

n diagrams colour ordered diagrams
4 4 3
5 25 10
6 220 36
7 2485 133
8 34300 501
9 559405 1991

10 10525900 7335

⇒ Big reduction in number of diagrams

but still too many diagrams
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Spinor Helicity Formalism

Spinor for a massless fermion, momentum p:

/pu(p) = 0, |p±〉 = u±(p) =
1

2
(1 ± γ5) u(p)

Spinor products:

〈ij〉 = 〈pi − |pj+〉 = u−(pi)u+(pj)

[ij] = 〈pi + |pj−〉 = u+(pi)u−(pj)

Spinor products are complex numbers and have numerical
representations

Dot products

sij = (pi + pj)
2 = 2 pi · pj = 〈ij〉[ji]
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Spinor Helicity Formalism

Polarisation vector for a massless gauge boson,
momentum p:

ε±µ (p, η) = ±〈p ± |γµ|η±〉√
2〈η ∓ |p±〉

Easy to show that:

ε± · ε±∗ = −1, p · ε(p, η) = 0, ε± · ε∓∗ = 0.

η is a light-like axial gauge vector

∑

ε±µ (p, η)ε±ν (p, η) = −gµν +
pµην + pνηµ

p · η

amplitudes are η independent
sensible choice kills many diagrams
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Spinor Helicity Formalism

In Weyl (chiral) representation, each helicity state is
represented by a bi-spinor (a = 1, 2)

u+(p) = λpa, u−(p) = λ̃ȧ
p,

u+(p) = λ̃pȧ, u−(p) = λa
p

so that

〈ij〉 = u−(pi)u+(pj) = λa
i λja = εabλ

a
i λb

j

[ij] = u+(pi)u−(pj) = λ̃iȧλ̃ȧ
j = −εȧḃλ̃

ȧ
i λ̃ḃ

j

We can write massless vector

paȧ ≡ pµσµ
aȧ = λpaλ̃pȧ
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Spinor Helicity Formalism

Polarisation vectors for particle i:

ε−iaȧ =
λiaη̃ȧ

[λ̃iη̃]
, ε+

iaȧ =
ηaλ̃iȧ

〈ηλi〉

For real momenta in Minkowski space,

λ̃ = λ∗

For space-time signature (+,+,−,−), λ̃, λ are real and
independent

Amplitudes are functions of the λi and λ̃i
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Recursion relations

Full amplitudes can be built up from simpler amplitudes with
fewer particles

1

n

1

n

1

l

m+1

m
l+1

m

m+1

n

Purple gluons are off-shell, green gluons are on-shell.
This is a recursion relation built from off-shell currents.

Berends, Giele

Particularly suited to numerical solution
ALPGEN, HELAC/PHEGAS
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Gluonic helicity amplitudes

n + + n −

559405

34300

2485
220

25
4

Tree Diagrams

−6 −4 −2 2 4 6 8−8 0

4

6

8

n + n −−

Each row describes scattering with n+ positive helicities and n−

negative helicities.
Each circle represents an allowed helicity configuration - from all
positive on the right to all negative on the left
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Gluonic helicity amplitudes

For example, the result of computing the 25 diagrams for the
five-gluon process yields

A5(1
±, 2+, 3+, 4+, 5+) = 0

A5(1
−, 2−, 3+, 4+, 5+) =

〈12〉4
〈12〉〈23〉〈34〉〈45〉〈51〉

In fact, for n point amplitudes,

An(1±, 2+, 3+, , . . . , n+) = 0

An(1−, 2−, 3+, . . . , n+) =
〈12〉4

〈12〉〈23〉 · · · 〈n1〉

Maximally helicity violating (MHV) amplitudes
Parke, Taylor; Berends, Giele
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Gluonic helicity amplitudes

n + + n −

−6 −4 −2 2 4 6 8−8 0

4

6

8

n + n −−

zerozerozero zero

mostly plusmostly minus

An(1±, 2+, 3+, , . . . , n+) = 0

effective tree-level supersymmetry
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Gluonic helicity amplitudes

n + + n −

−6 −4 −2 2 4 6 8−8 0

4

6

8

n + n −−

MHVMHV

An(1−, 2−, 3+, . . . , n+) =
〈12〉4

〈12〉〈23〉 · · · 〈n1〉
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Specific helicity amplitudes

For phenomenological purposes, all possible helicity amplitudes
are needed - and which are usually much more complicated. For
example, the 220 six gluon diagrams contributing to NMHV
amplitudes (3- and 3+ helicities) can be written as

A6 = 8g4

[

α2

s123s12s23s34s45s56
+

β2

s234s23s34s45s56s61

+
γ2

s345s34s45s56s61s12
+

s123βγ + s234γα + s345αβ

s12s23s34s45s56s61

]

where for A6(1
−, 2−, 3−, 4+, 5+, 6+),

α = 0, β = 〈23〉[56]〈4|/2+/3|1〉, γ = 〈12〉[45]〈6|/1+/2|3〉,

Hidden structure is uncovered in twistor space
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Twistor Space

Twistor space:
Penrose, 1967

Amplitudes in twistor space obtained by Fourier transform with
respect to positive helicity spinors,

Ã(λi, µi̇) =

∫

∏

i

d2λ̃i

(2π)2
exp



i
∑

j

µȧ
j λ̃jȧ



A(λi, λ̃i)

Witten observed that in twistor space external points lie on
certain algebraic curves
⇒ degree of curve is related to
the number of negative helicities
and loops

d = n− − 1 + l
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Twistor Space

2−

3+

1+

3+

5−
6+

7+
8+

3+

1+
2−8+

8+

1+

5−
6−

7+

5−
6+

7+

4+

4+

4+
5−

6−
7+

8+

3+

2−

1+

2−

4+

MHV

NMHV
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MHV rules

Start from MHV amplitude and define off-shell vertices
Cachazo, Svrcek and Witten

V (1−, 2−, 3+, . . . , n+, P+) =
〈12〉4

〈12〉 · · · 〈n − 1n〉〈nP 〉〈P1〉

P+

1-
2-

3+

n+

and

V (1−, 2+, 3+, . . . , n+, P−) =
〈1P 〉4

〈12〉 · · · 〈n − 1n〉〈nP 〉〈P1〉

P-

1-
2+

3+

n+

Crucial step is off-shell continuation P 2 6= 0:

〈iP 〉 =
〈i−|/P |η−〉

[Pη]
=

∑

j

〈i−|/j|η−〉
[Pη]

where P =
∑

j j and η is lightlike auxiliary vector Precision Phenomenology and Collider Physics – p.36



MHV rules

Must connect up a positive helicity off-shell line with a negative
helicity off-shell line

P +-

1-
2-

3+

j+j+1 +

n-
+

+

Connecting two MHV’s ⇒ amplitude with 3 negative helicities
Connecting three MHV’s ⇒ amplitude with 4 negative helicities
etc.
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Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the
first non-MHV amplitudes

A6(1
−, 2−, 3−, 4+, 5+, 6+)

Step 1 Draw all the allowed MHV diagrams

Precision Phenomenology and Collider Physics – p.38



Example: six gluon scattering

There are six MHV graphs

2−

4+

3−

5+6+

1−

6+

1−

4+

5+

2−

3−

2−

1−

4+

5+

6+

3−

6+

1−

6+ 4+

3−

1−

5+ 4+

3−

2−
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Example: six gluon scattering

Some graphs are not allowed e.g.

2−

3−

4+

5+
6+

1− 1−

2−

3−
4+

5+

6+

2−

3−

4+

5+
6+

1− 1−

2−

3− 4+

5+

6+
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Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the
first non-MHV amplitudes

A6(1
−, 2−, 3−, 4+, 5+, 6+)

Step 1 Draw all the allowed MHV diagrams

Step 2 Apply MHV rules to each diagram
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Example: six gluon scattering: diagram 1

1−

6+ 4+

3−

5+

2−

P

4+

3−

1−

6+
5+

2−

P

〈12〉4
〈56〉〈61〉〈12〉〈2|P |η〉〈5|P |η〉 ×

1

s34
× 〈3|P |η〉4

〈34〉〈4|P |η〉〈3|P |η〉

with P = 3 + 4 = −(1 + 2 + 5 + 6)
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Example: six gluon scattering: diagram 2

2−

4+

3−

5+6+

1−

P

2−

6+

1− 4+

3−

5+

〈12〉4
〈61〉〈12〉〈2|P |η〉〈6|P |η〉 ×

1

s345
× 〈3|P |η〉4

〈34〉〈45〉〈5|P |η〉〈3|P |η〉

with P = 3 + 4 + 5 = −(1 + 2 + 6)
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Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the
first non-MHV amplitudes

A6(1
−, 2−, 3−, 4+, 5+, 6+)

Step 1 Draw all the allowed MHV diagrams

Step 2 Apply MHV rules to each diagram

Step 3 Add up diagrams and check η independence
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Next-to MHV amplitude for n gluons

Simplest case: An(1−, 2−, 3−, 4+, . . . , n+) 2(n − 3) graphs

Cachazo, Svrcek and Witten

3−
2−

4+

i+ i+1+

n+
1− 3−

4+

i+ i+1+

n+

1−
2−

A =

n−1
X

i=3

〈1(2, i)〉3

〈(2, i)i + 1〉〈i + 1i + 2〉 . . . 〈n1〉

1

s2
2,i

〈23〉3

〈(2, i)2〉〈34〉 · · · 〈i(2, i)〉

+
n

X

i=4

〈12〉3

〈2(3, i)〉〈(3, i)i + 1〉 . . . 〈n1〉

1

s2
3,i

〈(3, i)3〉3

〈34〉 · · · 〈i − 1i〉〉〈i(3, i)〉
.

where (k, i) = k + · · · + i and the off-shell continuation is
suppressed
⇒ Lorentz invariant and gauge invariant expressions
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Generating all the tree amplitudes

Amplitudes with i− and j+ helicities

n + + n −

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
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MHV rules always adds one negative helicity and any
number of positive helicities
⇒ maps out all allowed tree amplitudes
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Other processes

MHV rules have been generalised to many other processes
√

with massless fermions - quarks, gluinos
Georgiou and Khoze; Wu and Zhu; Georgiou, EWNG and Khoze

√
with massless scalars - squarks

Georgiou, EWNG and Khoze; Khoze

√
with an external Higgs boson

Dixon, EWNG, Khoze; Badger, EWNG, Khoze

√
with an external weak boson

Bern, Forde, Kosower and Mastrolia

Has provided new results for n-particle amplitudes
Also useful for studying infrared properties of amplitudes

Birthwright, EWNG, Khoze and Marquard
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Processes with fermions

Similar colour decomposition

An(1, . . . ,Λr,Λs, . . . , n) =
∑

perms

(T a1 . . . T an)r,sAn(Λr, 1, . . . , n,Λs)

MHV amplitude with 2 fermions and n − 2 gluons

An(g−t ,Λ−
r ,Λ+

s ) =
〈tr〉3〈ts〉

∏n
i=1〈i i + 1〉

MHV amplitude with 4 fermions and n − 4 gluons

An(Λ−
r ,Λ+

s ,Λ−
t ,Λ+

u ) =
〈rt〉3〈su〉

∏n
i=1〈i i + 1〉

⇒ similar scalar graph construction for fermionic amplitudes
Georgiou and Khoze; Wu and Zhu; Georgiou, EWNG and Khoze
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Recursive MHV amplitudes

As the number of negative helicity legs grows, the number of
MHV diagrams grows
⇒ Use previously computed on-shell NMHV amplitudes as
building blocks for recursion relation

Bena, Bern and Kosower

i,j

i+1 i

j+1j

Σ=n m n−m+2

connected by same off-shell continuation as before.
Each blob is an amplitude with fewer particles and fewer
negative helicities.
⇒ easily programmed
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BCF recursion relations

Based on experience with one-loop amplitudes, Britto, Cachazo
and Feng proposed a new set of on-shell recursion relations

j

i
^ i

j

i

P P^ ^

j
^ ^

^

Britto, Cachazo and Feng
Britto, Cachazo, Feng and Witten

hatted momenta are shifted to put on-shell

î = i + zη, ĵ = j − zη, P̂ = P + zη

⇒ each vertex is an on-shell amplitude
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BCF recursion relations

It turns out that the shift η is not a momentum, but

η = λiλ̃j OR η = λj λ̃i

The parameter z is given by

z =
P 2

〈jP i]

Easy to prove that recursion relation is valid using complex
analysis

Requires on-shell three-point vertex contributions - both
MHV and MHV .
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BCF - six gluon example

If we select 3 and 4 to be the special gluons, there are only three
diagrams (for any helicities)

1− 2−

3−

4+5+

6+

P̂

^

^

2− 3−

4+

5+6+

1−

P

^

^

^ 1−

2−

3−

4+

5+
6+

P

^

^

^

For this helicity assignment, the middle one is zero!.
A6(1

−, 2−, 3−, 4+, 5+, 6+)

=
1

〈5|/3 + /4|2〉

( 〈1|/2 + /3|4〉3
[23][34]〈56〉〈61〉s234

+
〈3|/4 + /5|6〉3

[61][12]〈34〉〈45〉s345

)

Extremely compact (and correct) results for up to 8 gluons
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Other processes

BCF recursion relations have been generalised to other
processes
√

with massless fermions - quarks, gluinos
Luo and Wen

√
gravitons

Bedford, Brandhuber, Spence and Travaglini; Cachazo and Svrcek

There is nothing (in principle) to stop this approach being
applied to particles with mass.
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One loop amplitudes

So far, supersymmetry was not a major factor - tree level
amplitudes same for N = 4 N = 1 and QCD

Not true at the loop level due to circulating states

AN=4
n = A[1]

n + 4A[1/2]
n + 3A[0]

n

AN=1,chiral
n = A[1/2]

n + A[0]
n

Aglue
n = AN=4

n − 4AN=1,chiral
n + A[0]

n

All plus and nearly all-plus amplitudes do not vanish for
non-supersymmetric QCD

A lot of progress by a lot of people
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SUSY QCD loops

√ N = 4 and N = 1 one-loop amplitudes are constructible
from their 4-dimensional cuts
⇒ employ unitarity techniques

Bern, Dixon, Dunbar, Kosower

√
For N = 4 all amplitudes are a linear combination of known
box integrals

a

+  d + e + f

ΣAn = + b + c

PSfrag replacements

An;1 =
Σ

Precision Phenomenology and Collider Physics – p.55



Twistor space interpretation

Coefficients of boxes have very interesting structures.
Bern, Del Duca, Dixon, Kosower; Britto, Cachazo, Feng

PSfrag replacements

1−

2− 3− 4+

n+

1−
2−

3−
(c1 − 1)+

c1+

(c2 + 1)+ c2+

(c1 − 1)+

(c1 − 1)+

c1+

(c2 + 1)+

c2+
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Twistor space interpretation

Four mass box first appears in eight-point amplitude with
four negative and four positive helicities

Bern, Dixon, Kosower

e.g.

D

B

C

A

D

B

C

A

Precision Phenomenology and Collider Physics – p.57



QCD loops

QCD amplitudes more complicated

(a) Not 4-dimensional cut constructible. Rational function
contribution not probed by 4-d cut

(b) All plus and almost all plus amplitudes not zero - but
rational functions. Not protected by SWI.

Nevertheless, all four-point and five-point amplitudes known:
Recent progress
√

On-shell recurrence relations for all plus and almost all plus
amplitudes

Bern, Dixon and Kosower

Recursion relations complicated by double pole terms and
boundary terms

√
Scalar six-point NMHV amplitudes

Bidder, Bjerrum-Bohr, Dunbar and Perkins

Computed parts of six-point QCD amplitudes that are
obtainable using 4-dimensional cut constructibility
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Summary - Precise predictions

Last few years has seen substantial progress in pQCD
NNLO pQCD for collider phenomenology is becoming new
standard

Inclusive DIS coefficient functions completed

Unpolarised three-loop splitting functions completed

Differential distributions for Higgs and gauge bosons
completed

NNLO Jet cross sections on horizon for e+e− - and then
pp/ep

NNLO heavy quarks still a long way away
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Summary - New rules for tree-level amplitudes

MHV rules Cachazo, Svrcek and Witten

√
New way of computing amplitudes with gluons and
massless quarks

√
Higgs coupling to massless quarks and gluons

Dixon, EWNG, Khoze; Badger, EWNG, Khoze

√
Vector bosons coupling to massless quarks

Bern, Forde, Kosower and Mastrolia

BCF recursion relations Britto, Cachazo and Feng;
Britto, Cachazo, Feng and Witten

√
Extended to quarks

Luo and Wen

√
and gravitons

Bedford, Brandhuber, Travaglini, Spence; Cachazo, Svrcek
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Summary - New rules for one-loop amplitudes

√ N = 4 amplitudes
almost at the point where coefficients of boxes can be read
off - using quadruple cuts and holomorphic anomaly

Britto, Cachazo and Feng

⇒ All NMHV amplitudes
Bern, Dixon and Kosower

√ N = 1 MHV amplitudes and 6-point NMHV amplitudes
√

Application to one-loop gravity
Bern, Bjerrum-Bohr, Dunbar

? QCD amplitudes
Bedford, Brandhuber, Spence and Travaglini; Bern, Dixon and Kosower;

Bidder, Bjerrum-Bohr, Dunbar and Perkins

A very exciting and rapidly developing field
Expect more important results soon
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