Precision Phenomenology and Collider Physics

Computer algebra and particle physics,
DESY Zeuthen, April 4, 2005

Collider-physics \equiv perturbative QCD

1. Precise predictions for hard pp processes involving "standard particles" like W, Z, jets, top, Higgs

NNLO partonic cross sections

- few particles, but high order

2. Predictions for multiparticle final states that occur at a high rate and form background to New Physics

New methods for computing tree-amplitudes

- many particles, but low order

1. Precise Predictions

Hard processes in perturbative QCD

Example: inclusive deep-inelastic scattering (DIS)

Kinematic variables

$$
\begin{gathered}
\qquad \begin{array}{c}
Q^{2}=-q^{2} \\
x=Q^{2} /(2 P \cdot q)
\end{array} \\
\text { Lowest order : } x=\xi
\end{gathered}
$$

Structure functions F_{a} [up to $\mathcal{O}\left(1 / Q^{2}\right)$]

$$
F_{a}^{p}\left(x, Q^{2}\right)=\sum_{i}\left[c_{a, i}\left(\alpha_{s}\left(\mu^{2}\right), \mu^{2} / Q^{2}\right) \otimes f_{i}^{p}\left(\mu^{2}\right)\right](x)
$$

Coefficient functions $c_{a, i}$, renormalization/factorization scale μ

Hard processes in perturbative QCD

Parton distributions f_{i} : evolution equations

$$
\frac{d}{d \ln \mu^{2}} f_{i}\left(\xi, \mu^{2}\right)=\sum_{k}\left[P_{i k}\left(\alpha_{s}\left(\mu^{2}\right)\right) \otimes f_{k}\left(\mu^{2}\right)\right](\xi)
$$

Initial conditions incalculable in pert. QCD.
Splitting functions P, Coefficient functions c_{a}

$$
\begin{aligned}
P & =\alpha_{s} P^{(0)}+\alpha_{s}^{2} P^{(1)}+\alpha_{s}^{3} P^{(2)}+\ldots \\
c_{a} & =\alpha_{s}^{n_{a}}\left[c_{a}^{(0)}+\alpha_{s} c_{a}^{(1)}+\alpha_{s}^{2} c_{a}^{(2)}+\ldots\right]
\end{aligned}
$$

NLO: standard approximation
NNLO: new emerging standard

The running coupling in perturbative QCD

$$
d \alpha_{s} / d \ln \mu^{2}=-\beta_{0} \alpha_{s}^{2}-\beta_{1} \alpha_{s}^{3}-\beta_{2} \alpha_{s}^{4}-\beta_{3} \alpha_{s}^{5}-\ldots
$$

Four-loop coeff.:
van Ritbergen, Vermaseren, Larin; Czakon

Parton evolution from HERA to LHC

Kinematics: parton momenta $\xi_{-}<\xi<1$ probed

HERA \rightarrow LHC:
Q^{2} evolution across up to three orders of magnitude

Parton evolution at large x

$$
A(N)=\int_{0}^{1} d x x^{N-1} A(x) . \quad \text { Non-singlet: } u+\bar{u}-(d+\bar{d}) \text { etc }
$$

Moch, Vermaseren, Vogt

Parton evolution at large x

$A(N)=\int_{0}^{1} d x x^{N-1} A(x) . \quad$ Non-singlet: $u+\bar{u}-(d+\bar{d})$ etc

Moch, Vermaseren, Vogt
Perturbative expansion very benign: expect $<1 \%$ beyond NNLO

Parton evolution at small x

Scale derivatives of quark and gluon distributions at $Q^{2} \approx 30$ GeV^{2}

$$
\begin{array}{ll}
0.4 \\
0.2 & \mathrm{~d} \ln \mathrm{q} / \mathrm{d} \ln \mathrm{Q}^{2} \\
0 &
\end{array}
$$

Parton evolution at small x

Scale derivatives of quark and gluon distributions at $Q^{2} \approx 30$ GeV^{2}

Moch, Vermaseren, Vogt
Expansion very stable except for very small momenta $x \lesssim 10^{-4}$

Higgs boson production at the LHC

Higgs boson production at the LHC

Total cross section
Harlander, Kilgore; Anastasiou, Melnikov, Petriello; . . .
Fully differential
Anastasiou, Melnikov, Petriello
NNLO needed for reliable predictions

Gauge boson production at the LHC

Gauge boson production at the LHC

Gold-plated process
Anastasiou, Dixon, Melnikov, Petriello
NNLO perturbative accuracy better than 1%
\Rightarrow use to determine parton-parton luminosities at the LHC

Jet production at NNLO

- $p p \rightarrow$ jet +X requires matrix elements for
$2 \rightarrow 2$ at two-loops, $2 \rightarrow 3$ at one-loop and $2 \rightarrow 4$ at tree-level
Two-loop amplitudes solved in past five years thanks to
Smirnov, Tausk
- Techniques for handling infrared singularities Phase-space sector decomposition

Binoth, Heinrich; Anastasiou, Melnikov, Petriello
Subtraction terms
Kosower; Weinzierl; Gehrmann-De Ridder, Gehrmann + NG; ...

- First NNLO results for jets in $e^{+} e^{-}$annihilation Leading jet energy distribution in $e^{+} e^{-} \rightarrow 2$ jets

Anastasiou, Melnikov, Petriello
C_{F}^{3} part of first moment of Thrust distribution

2. Multiparticle Production

Multiparticle production

In many cases the backgrounds to New Physics are standard model multiparticle final states
\Rightarrow Whole raft of automated tree-level packages for generating cross section
e.g. MadEvent, ALPGEN, HELAC/PHEGAS, CompHEP, GRACE, . . .

Example: Multi-jet production at the LHC using HELAC /PHEGAS
Draggiotis, Kleiss, Papadopoloulos

\# of jets	2	3	4	5	6	7	8
\# of dist.processes	10	14	28	36	64	78	130
total \# of processes	126	206	621	861	1862	2326	4342
$\sigma(n b)$	-	91.41	6.54	0.458	0.030	0.0022	0.00021
\% Gluonic	-	45.7	39.2	35.7	35.1	33.8	26.6

Sizeable cross sections for multi-jet events
Large uncertainty since $\sigma(n$ jets $) \sim \alpha_{s}^{n}$

Multiparticle production

The number of tree Feynman diagrams for an n gluon process increases very quickly with n

n	diagrams
4	4
5	25
6	220
7	2485
8	34300
9	559405
10	10525900

\Rightarrow Feynman diagram evaluation is very inefficient for many legs

- too many diagrams, terms per diagram, kinematic variables

Insight from Twistor Space

- In a recent paper Witten made a striking proposal to relate perturbative gauge theory amplitudes to topological string theory in twistor space

Witten, hep-th/0312171
\Rightarrow Advance in calculating tree amplitudes in massless gauge theories:

Cachazo, Svrcek and Witten, hep-th/0403047
Amplitudes constructed from scalar propagators and tree-level maximal helicity violating (MHV) amplitudes which are interpreted as new scalar vertices
$\Rightarrow \quad$ New type of on-shell recursion relations
Britto, Cachazo and Feng, hep-th/0412308
\Rightarrow Recent developments in computing one-loop amplitudes in $\mathcal{N}=4$ SuperYang Mills theory (as well as $\mathcal{N}=1$ and maybe even QCD)

Colour Ordered Amplitudes

$$
\mathcal{A}_{n}(1, \ldots, n)=\sum_{\text {perms }} \operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) A_{n}(1, \ldots, n)
$$

Colour-stripped amplitudes A_{n} : cyclically ordered permutations
Order of external gluons fixed
The subamplitudes A_{n} are
(a) gauge invariant
(b) have nice properties in the infrared limits.

Can reconstruct the full amplitude \mathcal{A}_{n} from A_{n}. In the large N limit,

$$
\left|\mathcal{A}_{n}(1, \ldots, n)\right|^{2} \sim N^{n-2}\left(N^{2}-1\right) \sum_{\text {perms }}\left|A_{n}(1, \ldots, n)\right|^{2}
$$

Colour Ordered Feynman Rules

Only calculate diagrams with cyclic colour ordering
Example:
$A_{5}=$

$+$

i.e. 10 diagrams rather than 25

Power of colour ordering

n	diagrams	colour ordered diagrams
4	4	3
5	25	10
6	220	36
7	2485	133
8	34300	501
9	559405	1991
10	10525900	7335

\Rightarrow Big reduction in number of diagrams
but still too many diagrams

Spinor Helicity Formalism

- Spinor for a massless fermion, momentum p :

$$
p u(p)=0, \quad|p \pm\rangle=u_{ \pm}(p)=\frac{1}{2}\left(1 \pm \gamma_{5}\right) u(p)
$$

- Spinor products:

$$
\begin{aligned}
\langle i j\rangle & =\left\langle p_{i}-\mid p_{j}+\right\rangle=\overline{u_{-}\left(p_{i}\right)} u_{+}\left(p_{j}\right) \\
{[i j] } & =\left\langle p_{i}+\mid p_{j}-\right\rangle=\overline{u_{+}\left(p_{i}\right)} u_{-}\left(p_{j}\right)
\end{aligned}
$$

- Spinor products are complex numbers and have numerical representations
- Dot products

$$
s_{i j}=\left(p_{i}+p_{j}\right)^{2}=2 p_{i} \cdot p_{j}=\langle i j\rangle[j i]
$$

Spinor Helicity Formalism

- Polarisation vector for a massless gauge boson, momentum p :

$$
\epsilon_{\mu}^{ \pm}(p, \eta)= \pm \frac{\langle p \pm| \gamma_{\mu}|\eta \pm\rangle}{\sqrt{2}\langle\eta \mp \mid p \pm\rangle}
$$

- Easy to show that:

$$
\epsilon^{ \pm} \cdot \epsilon^{ \pm *}=-1, \quad p \cdot \epsilon(p, \eta)=0, \quad \epsilon^{ \pm} \cdot \epsilon^{\mp *}=0 .
$$

- η is a light-like axial gauge vector

$$
\sum \epsilon_{\mu}^{ \pm}(p, \eta) \epsilon_{\nu}^{ \pm}(p, \eta)=-g_{\mu \nu}+\frac{p_{\mu} \eta_{\nu}+p_{\nu} \eta_{\mu}}{p \cdot \eta}
$$

- amplitudes are η independent

Spinor Helicity Formalism

- In Weyl (chiral) representation, each helicity state is represented by a bi-spinor ($a=1,2$)

$$
\begin{array}{ll}
u_{+}(p)=\lambda_{p a}, & u_{-}(p)=\tilde{\lambda}_{p}^{\dot{a}} \\
\overline{u_{+}(p)}=\tilde{\lambda}_{p \dot{a}}, & \overline{u_{-}(p)}=\lambda_{p}^{a}
\end{array}
$$

so that

$$
\begin{aligned}
\langle i j\rangle & =\overline{u_{-}\left(p_{i}\right)} u_{+}\left(p_{j}\right)=\lambda_{i}^{a} \lambda_{j a}=\epsilon_{a b} \lambda_{i}^{a} \lambda_{j}^{b} \\
{[i j] } & =\overline{u_{+}\left(p_{i}\right)} u_{-}\left(p_{j}\right)=\tilde{\lambda}_{i a} \tilde{\lambda}_{j}^{\dot{a}}=-\epsilon_{\dot{a} b} \tilde{\lambda}_{i}^{\dot{a}} \tilde{\lambda}_{j}^{\dot{b}}
\end{aligned}
$$

- We can write massless vector

$$
p_{a \dot{a}} \equiv p_{\mu} \sigma_{a \dot{a}}^{\mu}=\lambda_{p a} \tilde{\lambda}_{p \dot{a}}
$$

Spinor Helicity Formalism

- Polarisation vectors for particle i :

$$
\varepsilon_{i a \dot{a}}^{-}=\frac{\lambda_{i a} \tilde{\eta}_{\dot{a}}}{\left[\tilde{\lambda}_{i} \tilde{\eta}\right]}, \quad \varepsilon_{i a \dot{a}}^{+}=\frac{\eta_{a} \tilde{\lambda}_{i \dot{a}}}{\left\langle\eta \lambda_{i}\right\rangle}
$$

- For real momenta in Minkowski space,

$$
\tilde{\lambda}=\lambda^{*}
$$

- For space-time signature $(+,+,-,-), \tilde{\lambda}, \lambda$ are real and independent
- Amplitudes are functions of the λ_{i} and $\tilde{\lambda}_{i}$

Recursion relations

Full amplitudes can be built up from simpler amplitudes with fewer particles

n

Purple gluons are off-shell, green gluons are on-shell.
This is a recursion relation built from off-shell currents.
Berends, Giele
Particularly suited to numerical solution

Gluonic helicity amplitudes

Each row describes scattering with n_{+}positive helicities and n_{-} negative helicities.
Each circle represents an allowed helicity configuration - from all positive on the right to all negative on the left

Gluonic helicity amplitudes

For example, the result of computing the 25 diagrams for the five-gluon process yields

$$
\begin{aligned}
& A_{5}\left(1^{ \pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=0 \\
& A_{5}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle}
\end{aligned}
$$

In fact, for n point amplitudes,

$$
\begin{aligned}
A_{n}\left(1^{ \pm}, 2^{+}, 3^{+}, \ldots, n^{+}\right) & =0 \\
A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right) & =\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
\end{aligned}
$$

Maximally helicity violating (MHV) amplitudes
Parke, Taylor; Berends, Giele

Gluonic helicity amplitudes

effective tree-level supersymmetry

Gluonic helicity amplitudes

Specific helicity amplitudes

For phenomenological purposes, all possible helicity amplitudes are needed - and which are usually much more complicated. For example, the 220 six gluon diagrams contributing to NMHV amplitudes ($3-$ and $3+$ helicities) can be written as

$$
\begin{aligned}
A_{6}= & 8 g^{4}\left[\frac{\alpha^{2}}{s_{123} s_{12} s_{23} s_{34} s_{45} s_{56}}+\frac{\beta^{2}}{s_{234} s_{23} s_{34} s_{45} s_{56} s_{61}}\right. \\
& \left.+\frac{\gamma^{2}}{s_{345} s_{34} s_{45} s_{56} s_{61} s_{12}}+\frac{s_{123} \beta \gamma+s_{234} \gamma \alpha+s_{345} \alpha \beta}{s_{12} s_{23} s_{34} s_{45} s_{56} s_{61}}\right]
\end{aligned}
$$

where for $A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)$,
$\alpha=0, \quad \beta=\langle 23\rangle[56]\langle 4| \not 2+\npreceq|1\rangle, \quad \gamma=\langle 12\rangle[45]\langle 6| \nmid \chi+\nsupseteq|3\rangle$,

Hidden structure is uncovered in twistor space

Twistor Space

Twistor space:
Penrose, 1967
Amplitudes in twistor space obtained by Fourier transform with respect to positive helicity spinors,

$$
\tilde{A}\left(\lambda_{i}, \mu_{i}\right)=\int \prod_{i} \frac{d^{2} \tilde{\lambda}_{i}}{(2 \pi)^{2}} \exp \left(i \sum_{j} \mu_{j}^{\dot{a}} \tilde{\lambda}_{j a}\right) A\left(\lambda_{i}, \tilde{\lambda}_{i}\right)
$$

Witten observed that in twistor space external points lie on certain algebraic curves
\Rightarrow degree of curve is related to
the number of negative helicities and loops

$$
d=n_{-}-1+l
$$

Twistor Space

Precision Phenomenology and Collider Physics - p. 3

MHV rules

Start from MHV amplitude and define off-shell vertices
Cachazo, Svrcek and Witten

$$
V\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}, P^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle \cdots\langle n-1 n\rangle\langle n P\rangle\langle P 1\rangle}
$$

and
$V\left(1^{-}, 2^{+}, 3^{+}, \ldots, n^{+}, P^{-}\right)=\frac{\langle 1 P\rangle^{4}}{\langle 12\rangle \cdots\langle n-1 n\rangle\langle n P\rangle\langle P 1\rangle}$

Crucial step is off-shell continuation $P^{2} \neq 0$:

$$
\langle i P\rangle=\frac{\left\langle i^{-}\right| P\left|\eta^{-}\right\rangle}{[P \eta]}=\sum_{j} \frac{\left.\left\langle i^{-}\right|,| | \eta^{-}\right\rangle}{[P \eta]}
$$

where $P=\sum_{j} j$ and η is lightlike auxiliary vector

MHV rules

Must connect up a positive helicity off-shell line with a negative helicity off-shell line

Connecting two MHV's \Rightarrow amplitude with 3 negative helicities Connecting three MHV's \Rightarrow amplitude with 4 negative helicities etc.

Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$
A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)
$$

Step 1 Draw all the allowed MHV diagrams

Example: six gluon scattering

There are six MHV graphs

Example: six gluon scattering

Some graphs are not allowed e.g.

Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$
A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)
$$

Step 1 Draw all the allowed MHV diagrams
Step 2 Apply MHV rules to each diagram

Example: six gluon scattering: diagram 1

$$
\frac{\langle 12\rangle^{4}}{\langle 56\rangle\langle 61\rangle\langle 12\rangle\langle 2| P|\eta\rangle\langle 5| P|\eta\rangle} \times \frac{1}{s_{34}} \times \frac{\langle 3| P|\eta\rangle^{4}}{\langle 34\rangle\langle 4| P|\eta\rangle\langle 3| P|\eta\rangle}
$$

with $P=3+4=-(1+2+5+6)$

Example: six gluon scattering: diagram 2

$$
\frac{\langle 12\rangle^{4}}{\langle 61\rangle\langle 12\rangle\langle 2| P|\eta\rangle\langle 6| P|\eta\rangle} \times \frac{1}{s_{345}} \times \frac{\langle 3| P|\eta\rangle^{4}}{\langle 34\rangle\langle 45\rangle\langle 5| P|\eta\rangle\langle 3| P|\eta\rangle}
$$

with $P=3+4+5=-(1+2+6)$

Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$
A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)
$$

Step 1 Draw all the allowed MHV diagrams
Step 2 Apply MHV rules to each diagram
Step 3 Add up diagrams and check η independence

Next-to MHV amplitude for n gluons

Simplest case: $A_{n}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, \ldots, n^{+}\right)$ $2(n-3)$ graphs

Cachazo, Svrcek and Witten

$$
\begin{aligned}
& A=\sum_{i=3}^{n-1} \frac{\langle 1(2, i)\rangle^{3}}{\langle(2, i) i+1\rangle\langle i+1 i+2\rangle \ldots\langle n 1\rangle} \frac{1}{s_{2, i}^{2}} \frac{\langle 23\rangle^{3}}{\langle(2, i) 2\rangle\langle 34\rangle \cdots\langle i(2, i)\rangle} \\
& +\sum_{i=4}^{2+2}
\end{aligned}
$$

where $(k, i)=k+\cdots+i$ and the off-shell continuation is suppressed
\Rightarrow Lorentz invariant and gauge invariant expressions

Generating all the tree amplitudes

Amplitudes with $i-$ and $j+$ helicities

- MHV rules always adds one negative helicity and any number of positive helicities
\Rightarrow maps out all allowed tree amplitudes

Other processes

MHV rules have been generalised to many other processes
$\sqrt{ }$ with massless fermions - quarks, gluinos
Georgiou and Khoze; Wu and Zhu; Georgiou, EWNG and Khoze
with massless scalars - squarks
Georgiou, EWNG and Khoze; Khoze
$\sqrt{ }$ with an external Higgs boson
Dixon, EWNG, Khoze; Badger, EWNG, Khoze
$\sqrt{ }$ with an external weak boson
Bern, Forde, Kosower and Mastrolia
Has provided new results for n-particle amplitudes
Also useful for studying infrared properties of amplitudes
Birthwright, EWNG, Khoze and Marquard

Processes with fermions

Similar colour decomposition

$$
\mathcal{A}_{n}\left(1, \ldots, \Lambda_{r}, \Lambda_{s}, \ldots, n\right)=\sum_{\text {perms }}\left(T^{a_{1}} \ldots T^{a_{n}}\right)_{r, s} A_{n}\left(\Lambda_{r}, 1, \ldots, n, \Lambda_{s}\right)
$$

MHV amplitude with 2 fermions and $n-2$ gluons

$$
A_{n}\left(g_{t}^{-}, \Lambda_{r}^{-}, \Lambda_{s}^{+}\right)=\frac{\langle t r\rangle^{3}\langle t s\rangle}{\prod_{i=1}^{n}\langle i i+1\rangle}
$$

MHV amplitude with 4 fermions and $n-4$ gluons

$$
A_{n}\left(\Lambda_{r}^{-}, \Lambda_{s}^{+}, \Lambda_{t}^{-}, \Lambda_{u}^{+}\right)=\frac{\langle r t\rangle^{3}\langle s u\rangle}{\prod_{i=1}^{n}\langle i i+1\rangle}
$$

\Rightarrow similar scalar graph construction for fermionic amplitudes
Georgiou and Khoze; Wu and Zhu; Georgiou, EWNG and Khoze

Recursive MHV amplitudes

As the number of negative helicity legs grows, the number of MHV diagrams grows
\Rightarrow Use previously computed on-shell NMHV amplitudes as building blocks for recursion relation

Bena, Bern and Kosower

connected by same off-shell continuation as before.
Each blob is an amplitude with fewer particles and fewer negative helicities.
\Rightarrow easily programmed

BCF recursion relations

Based on experience with one-loop amplitudes, Britto, Cachazo and Feng proposed a new set of on-shell recursion relations

Britto, Cachazo and Feng
Britto, Cachazo, Feng and Witten
hatted momenta are shifted to put on-shell

$$
\hat{i}=i+z \eta, \quad \hat{j}=j-z \eta, \quad \hat{P}=P+z \eta
$$

\Rightarrow each vertex is an on-shell amplitude

BCF recursion relations

- It turns out that the shift η is not a momentum, but

$$
\eta=\lambda_{i} \tilde{\lambda}_{j} \quad O R \quad \eta=\lambda_{j} \tilde{\lambda}_{i}
$$

- The parameter z is given by

$$
z=\frac{P^{2}}{\langle j P i\rangle}
$$

- Easy to prove that recursion relation is valid using complex analysis
- Requires on-shell three-point vertex contributions - both MHV and MHV .

BCF - six gluon example

If we select 3 and 4 to be the special gluons, there are only three diagrams (for any helicities)

For this helicity assignment, the middle one is zero!. $A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)$

Extremely compact (and correct) results for up to 8 gluons

Other processes

BCF recursion relations have been generalised to other processes
$\sqrt{ }$ with massless fermions - quarks, gluinos
Luo and Wen
gravitons
Bedford, Brandhuber, Spence and Travaglini; Cachazo and Svrcek
There is nothing (in principle) to stop this approach being applied to particles with mass.

One loop amplitudes

- So far, supersymmetry was not a major factor - tree level amplitudes same for $\mathcal{N}=4 \mathcal{N}=1$ and QCD
- Not true at the loop level due to circulating states

$$
\begin{aligned}
A_{n}^{\mathcal{N}=4} & =A_{n}^{[1]}+4 A_{n}^{[1 / 2]}+3 A_{n}^{[0]} \\
A_{n}^{\mathcal{N}=1, \text { chiral }} & =A_{n}^{[1 / 2]}+A_{n}^{[0]} \\
A_{n}^{\text {glue }} & =A_{n}^{\mathcal{N}=4}-4 A_{n}^{\mathcal{N}=1, \text { chiral }}+A_{n}^{[0]}
\end{aligned}
$$

- All plus and nearly all-plus amplitudes do not vanish for non-supersymmetric QCD
- A lot of progress by a lot of people

SUSY QCD loops

$\mathcal{N}=4$ and $\mathcal{N}=1$ one-loop amplitudes are constructible from their 4-dimensional cuts
\Rightarrow employ unitarity techniques
Bern, Dixon, Dunbar, Kosower
For $\mathcal{N}=4$ all amplitudes are a linear combination of known box integrals

$$
A_{\mathbf{n}}=\Sigma
$$

Twistor space interpretation

- Coefficients of boxes have very interesting structures.

Bern, Del Duca, Dixon, Kosower; Britto, Cachazo, Feng

Twistor space interpretation

- Four mass box first appears in eight-point amplitude with four negative and four positive helicities

Bern, Dixon, Kosower
e.g.

QCD loops

QCD amplitudes more complicated
(a) Not 4-dimensional cut constructible. Rational function contribution not probed by 4-d cut
(b) All plus and almost all plus amplitudes not zero - but rational functions. Not protected by SWI.

Nevertheless, all four-point and five-point amplitudes known: Recent progress
$\sqrt{ }$ On-shell recurrence relations for all plus and almost all plus amplitudes

Bern, Dixon and Kosower
Recursion relations complicated by double pole terms and boundary terms
$\sqrt{ }$ Scalar six-point NMHV amplitudes
Bidder, Bjerrum-Bohr, Dunbar and Perkins
Computed parts of six-point QCD amplitudes that are obtainable using 4-dimensional cut constructibility

Summary - Precise predictions

Last few years has seen substantial progress in pQCD NNLO pQCD for collider phenomenology is becoming new standard

- Inclusive DIS coefficient functions completed
- Unpolarised three-loop splitting functions completed
- Differential distributions for Higgs and gauge bosons completed
- NNLO Jet cross sections on horizon for $e^{+} e^{-}$- and then pp/ep
- NNLO heavy quarks still a long way away

Summary - New rules for tree-level amplitudes

- MHV rules

Cachazo, Svrcek and Witten
$\sqrt{ }$ New way of computing amplitudes with gluons and massless quarks
$\sqrt{ }$ Higgs coupling to massless quarks and gluons
Dixon, EWNG, Khoze; Badger, EWNG, Khoze
$\sqrt{ }$ Vector bosons coupling to massless quarks
Bern, Forde, Kosower and Mastrolia

- BCF recursion relations

Britto, Cachazo and Feng;
Britto, Cachazo, Feng and Witten
$\sqrt{ }$ Extended to quarks
$\sqrt{ }$ and gravitons
Bedford, Brandhuber, Travaglini, Spence; Cachazo, Svrcek

Summary - New rules for one-loop amplitudes

$\sqrt{ } \mathcal{N}=4$ amplitudes
almost at the point where coefficients of boxes can be read off - using quadruple cuts and holomorphic anomaly

Britto, Cachazo and Feng
$\Rightarrow \quad$ All NMHV amplitudes
Bern, Dixon and Kosower
$\sqrt{ } \mathcal{N}=1$ MHV amplitudes and 6-point NMHV amplitudes
$\sqrt{ }$ Application to one-loop gravity
Bern, Bjerrum-Bohr, Dunbar
? QCD amplitudes
Bedford, Brandhuber, Spence and Travaglini; Bern, Dixon and Kosower; Bidder, Bjerrum-Bohr, Dunbar and Perkins

A very exciting and rapidly developing field
Expect more important results soon

