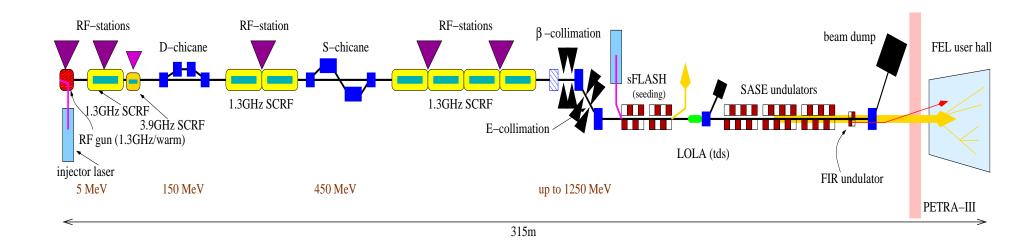
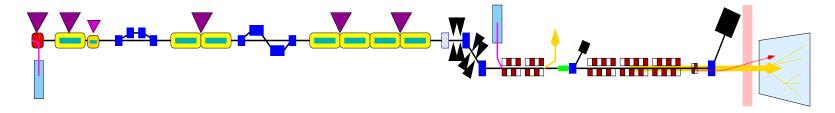
DESY–Zeuthen Technisches Seminar 2015-04-21

FLASH2, die neue Beamline bei FLASH


Mathias Vogt (DESY–MFL)

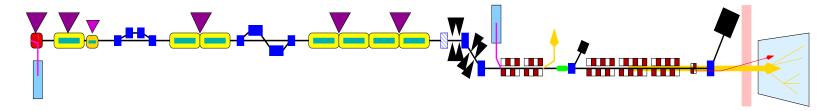
- Überblick FLASH
- FLASH2 : Prinzipieller Aufbau
- Inbetriebnahme / 1st beam to dump / 1st lasing
- Parallelbetrieb von FLASH1 & FLASH2
- Bei Interesse & Zeit : Was ist ein FEL


Überblick FLASH (vor dem Umbau)

- Normalleitende
 RF photocathode gun
- supraleitender LINAC 1.3 GHz
- duty cycle $\approx 1.5\%$
- \Rightarrow bis zu 8000 Bunche /s

- Freie Elektronen LASER (FEL)
- weiche Röntgenstrahlung: $40 \text{ nm} \rightarrow 4 \text{ nm}$
- hohe Brillanz
- kurze Photon-Pulse

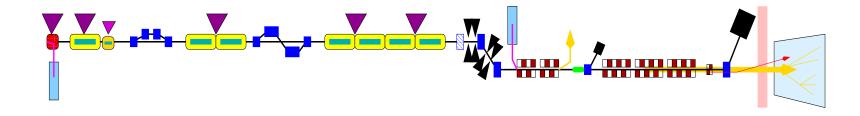
FLASH: RF Potocathode Gun



- Weiterentwicklung / Optimierung: PITZ
- Normalleitendes
 1.6-cell Cu-cavity
- $\leftarrow P_{\mathrm{fwd}} pprox 5$ MW, $E_{\mathrm{max,cathode}} pprox 55 \; \mathrm{MV/m}$
 - CsTe-Photokathode
 - ullet 292 nm LASER : max 800 bu (1 μ s Abstand) bei 10 Hz Wiederholfrequenz
 - LASER-Pulslänge : 6.5 ps

• Bunchladung: 20 pC \rightarrow 3 nC Bunchenergie: \approx 5.3 MeV

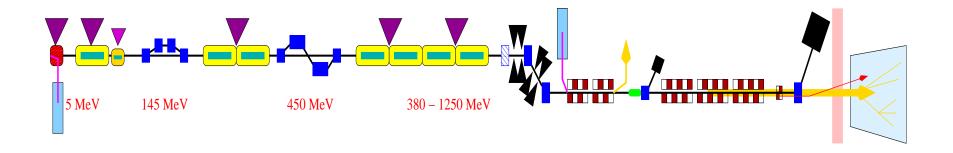
FLASH: Erste Beschleunigungsmodule (ACC1 & ACC39


• ACC1: 8 × TESLA 9-cell Niob-cavity

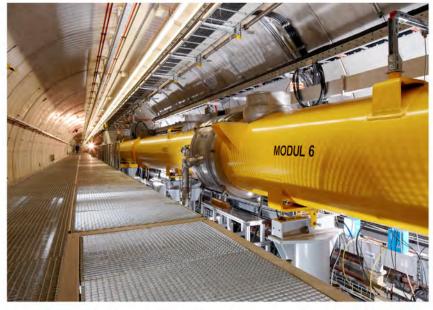
- ightarrow Energiegewinn $160 \dots 165$ MeV
 - ACC39: "Dritte Harmonische" $(3 \times 1.3 = 3.9)$ GHz
- \rightarrow Linearisierung der Bunch-kompression
- ightarrow Entschleunigung $-15\ldots$ 20 MeV



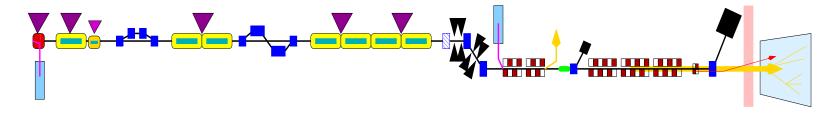
FLASH: Bunchkompression: 2 Stufen

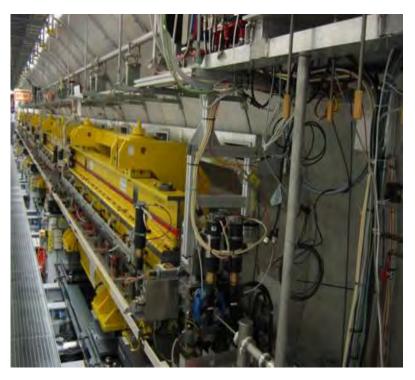


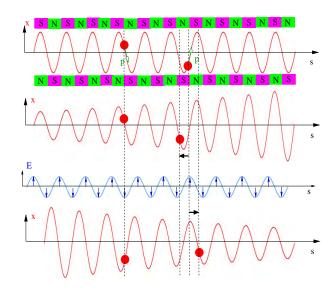
Bunchkompression = Energie-Chirp (RF) \times Magnetische Schikane

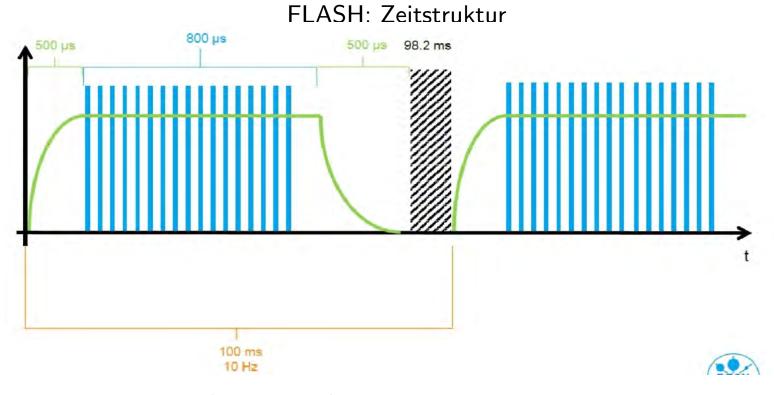

1. Stufe: $ACC1/39 \times BC2$ 2. Stufe: $ACC23 \times BC3$

FLASH: Haupt-LINAC (ACC45/67)

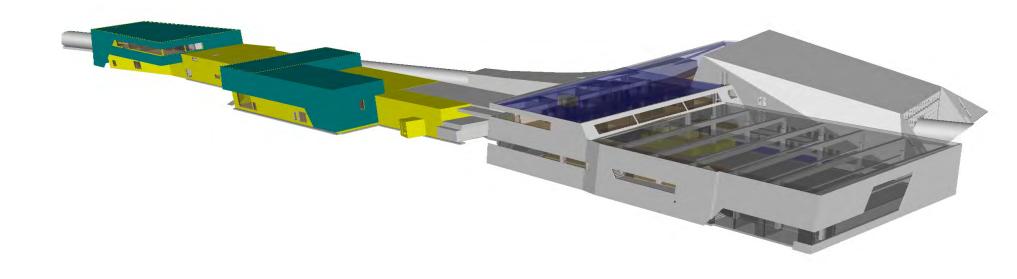



- 4 Module (je 8 cav.)
- ACC7 : XFEL Prototyp : > 400 MeV Energiegewinn
- Endenergie : $\approx 380 \text{ MeV} \sim 40 \text{ nm}$ ($\leftarrow \text{Entschleunigung!}$) bis 1250 MeV $\sim 4.15 \text{ nm}$ ($\leftarrow \text{max}$)


Fotoshooting bei DESY, FLASH-Tunnel, Februar 2012 Fotos: Heiner Müller-Bisner

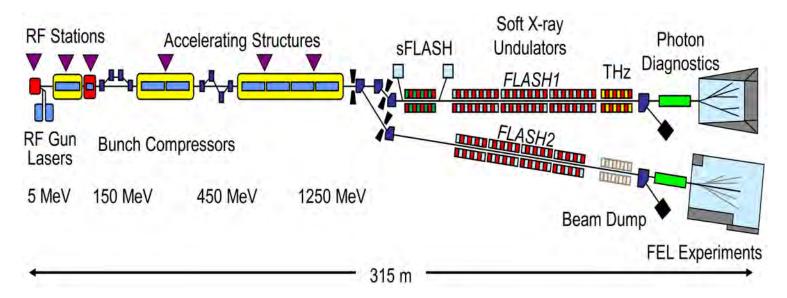

FLASH: FLASH1-UNDULATOR

- Fixed gap Undulatoren
- \Rightarrow FEL Wellenlänge NUR über e^- -Strahlenergie $\lambda_{
 m fel} \propto 1/E_{
 m beam}^2$


- 500 μs Füllzeit (SL cavities)
- bis 800 μ s nutzbares **flat top** (RF-Puls)
- LASER : Bunche mit max 1 MHz
 ⇒ max 800 bu/RF-Puls

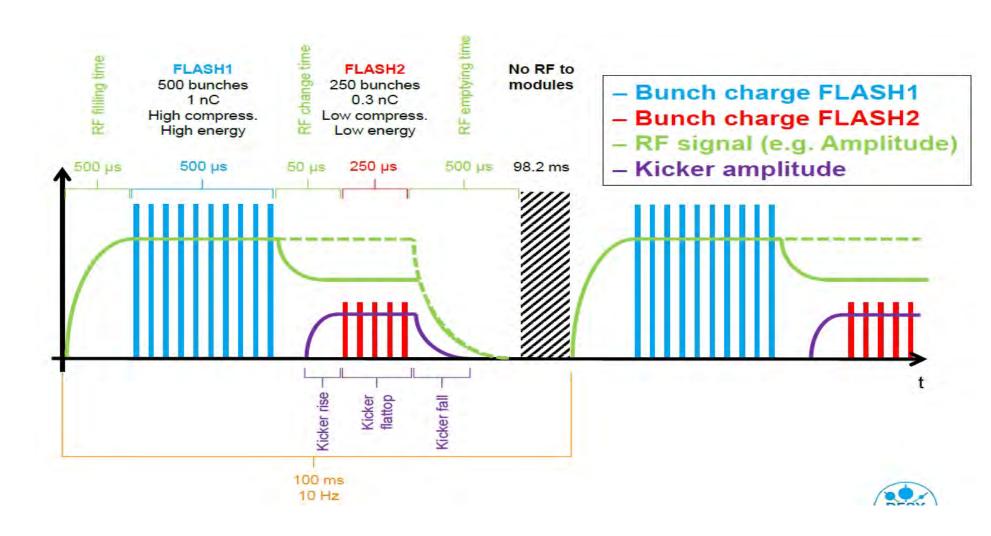
- RF-Pulse mit 10 Hz
- ⇒ 10 Bunchtrains/s mit max. 800 Bunchen
 - Zuviel für eine beam line ?????

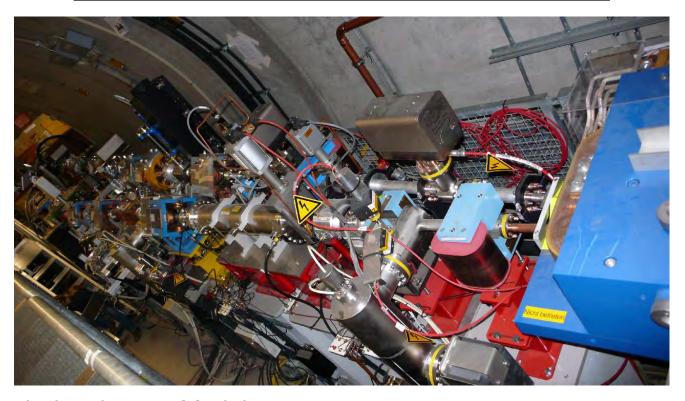
FLASH mit FLASH1 und FLASH2


FLASH2 Gebäude

- Extraktion (Anschluss an den FLASH LINAC)
- ← Obergeschoss : Hochleistungslaser für FLashForward
- FLASH2 "Tunnel"
- Technik-Abseiten Nord/Süd
- FLASH2 Experimentierhalle

Überblick FLASH (nach dem Umbau)


- FLASH = FLASH-Injektor → FLASH-LINAC → { FLASH1 & FLASH2 }
- Gemeinsame gun & gemeinsame Module (→ split flat tops) & gemeinsame Magnete in Injektor und LINAC


- 2 (ev. 3) unabhängige Injektor— FL2: variable gap Undulatoren LASER \Rightarrow FL2 Wellenlänge (m.o.w.) un-
- FL1: fixed gap Undulatoren abhängig von FL1

Beispiel für neue Zeitstruktur (2 beam lines)

Beide beam lines mit jeweils 10 Hz \Rightarrow split bunch trains

Das Herzstück der Zweigleisigkeit : Die Extraktion

- Nach dem letzten Modul:
- 2 (3) vertikale Kicker mit extrem glatten flat top (kein Bild)
- \rightarrow FL1 ungekickt
- → FL2 nach oben

- \rightarrow Lambertson Septum (\uparrow rechts):
 - unteres Strahlrohr
 - \rightarrow geradeaus \rightarrow FLASH1
 - oberes Strahlrohr
 - \rightarrow 6.5° nach rechts \rightarrow FLASH2

Die FLASH2 Undulatorhalle ("FLASH2 Tunnel")

 $\nearrow e^-$ -dump

✓ FLASH linac / Extraktion

Die FLASH2 Undulatorhalle ("FLASH2 Tunnel")

 e^- –dump \nwarrow

FLASH linac / Extraktion 📐

Die FLASH2 Undulatoren

 \bullet Variables Undulator gap \Rightarrow für gegebene $e^-{-}{\rm Energie}$: FEL-Wellenlängenbereich

 \bullet 0.7 GeV : 10 nm \rightarrow 40 nm

• 1.0 GeV : 6 nm \rightarrow 20 nm

ullet 1.2 GeV : 4.5 nm ightarrow 13.5 nm

oben FLASH2 variable gap Undulator mit Diagnose Ständer (I + r)

unten Diagnose Ständer (von l.n.r.):

- \rightarrow Phaseshifter,
- \rightarrow IGP,
- \rightarrow hochaufl. BPM,
- \rightarrow Quadrupol (auf mover),
- \rightarrow AirCoil (Undu.-Korr.)

Separation e^- / γ

 $\nearrow e^- - \mathrm{dump}$

✓ FLASH2 Undulatoren

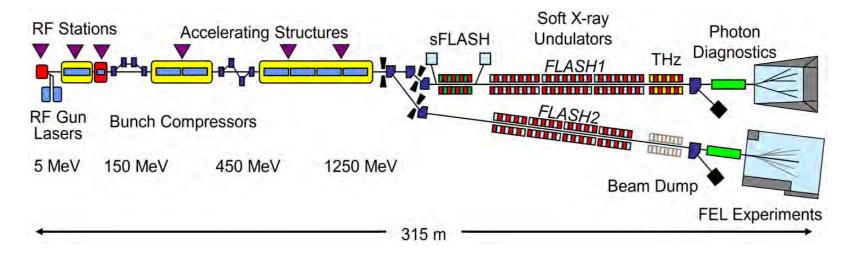
$\frac{\gamma \text{ Beamline} / e^-\text{-Dump}}{\downarrow \gamma \text{ beamline} \downarrow}$

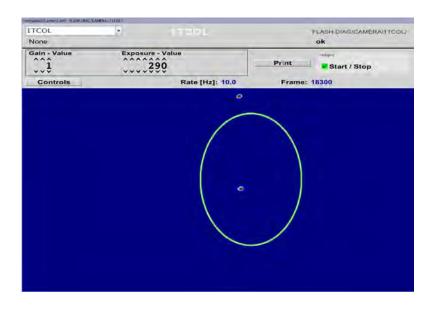
$$e^-\mathrm{-Dump}\searrow$$

Separation e^- / γ : Gegen Strahlrichtung

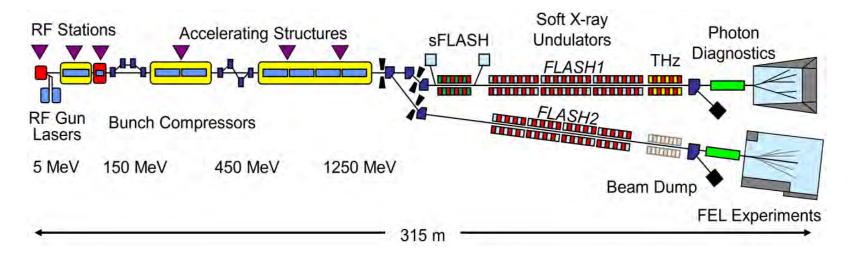
← FLASH2 Undulatoren

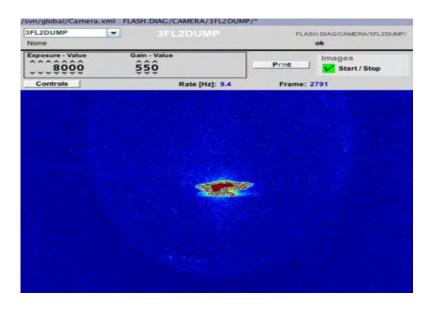
FLASH2 Experimentierhalle \rightarrow


$\gamma \,\, \mathsf{Diagnose}$

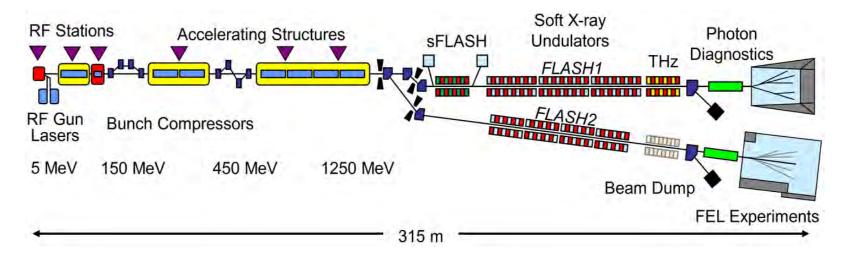

$\leftarrow \mathsf{FLASH2}\ \mathsf{Undulatoren}$

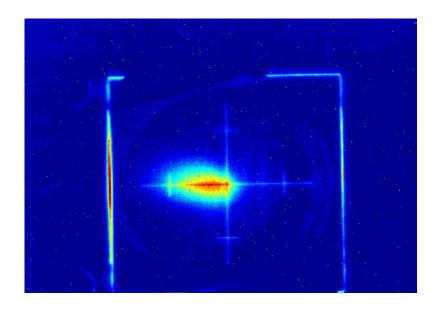
FLASH2 Experimentierhalle \rightarrow


FLASH2 Inbetriebnahme: 04.03.2014: Erster Strahl durchs Septum

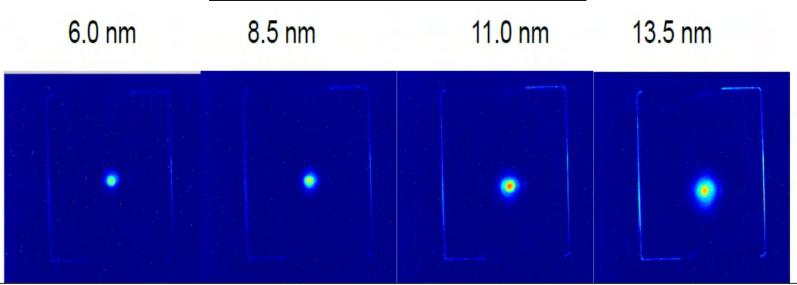


- Optik vor dem Septum!
- Orbit vor dem Septum!
- Septum Winkel (Strom)!
- Bild: FL1 (unten) & FL2 (oben)
 Bunch (auf OTR Schirm)

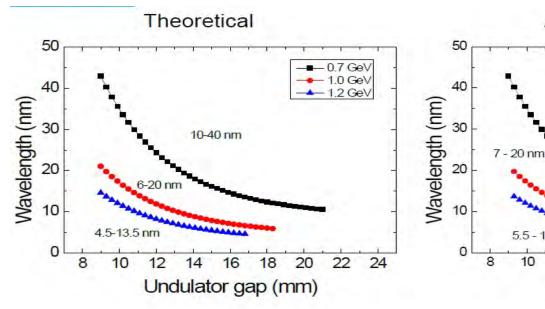

FLASH2 Inbetriebnahme: 23.05.2014: Erster Strahl im Dump

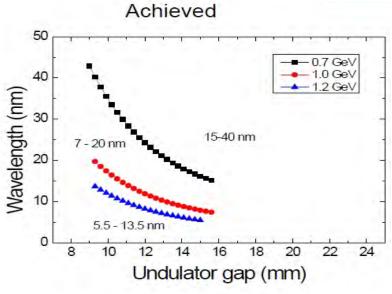


- FLASH2 Diagnostik (BPMs, Schirme, Strahlstrom–Monitore)!
- Optik & Orbit in Extraktion!
- Optik & Orbit in FL2 beam line!
- Undulatoren noch offen (= "aus")
- Bild: Bunch auf OTR vor Dump


FLASH2 Inbetriebnahme: 20.08.2014: First Lasing

- Parallelbetrieb : FL1 mit 250 bu bei 13.5 nm
- 4 (von 12) Undulatoren (ganz) geschlossen
- Entschärfte Optik
- Kompression wie in FLASH1
- FL2: 700 MeV ⇒ 40 nm

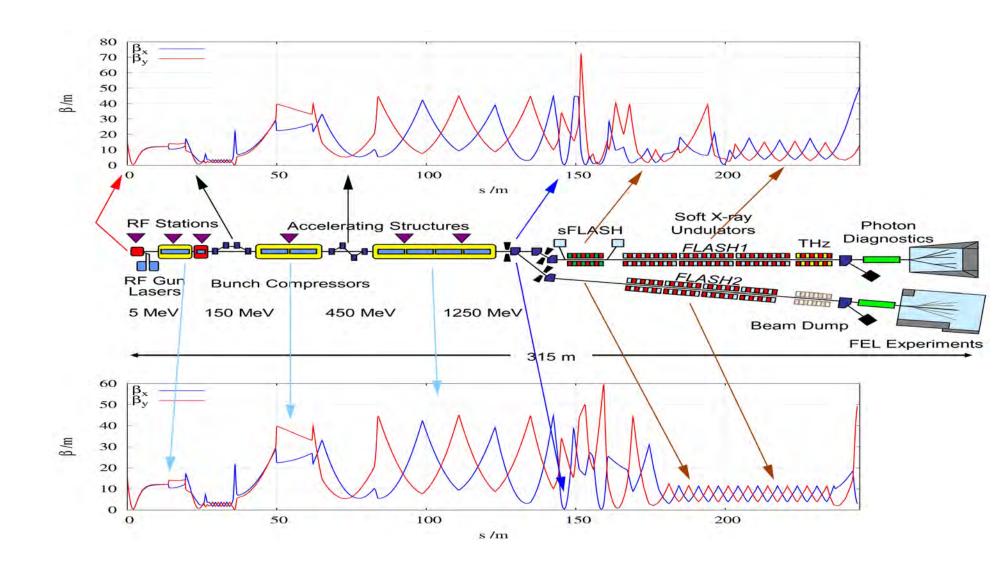



- \bullet e^- -Diagnostik stabilisiert
- Dispersion (Wirkung der Ablenkmagnete bei abweichender Energie) Optimiert
- Optik verbessert
- Orbits besser verstanden

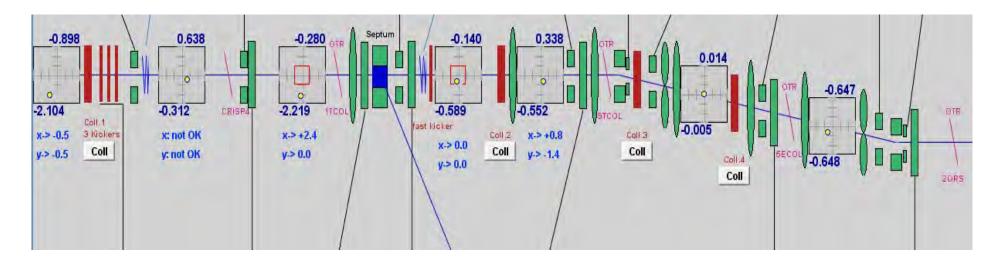
- ullet Vorläufige $\gamma-{\sf Diagnostik}$ in Betrieb
- → Lasing optimiert bei verschiedenen Wellenlängen
 - \bullet Bild : FEL Strahlung auf Schirm in γ beam line

FLASH2 Inbetriebnahme : work in Progress

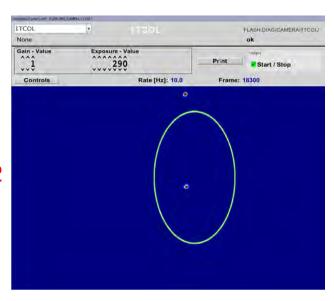
Inbetriebnahme geht weiter. Optimierung noch nicht abgeschlossen.



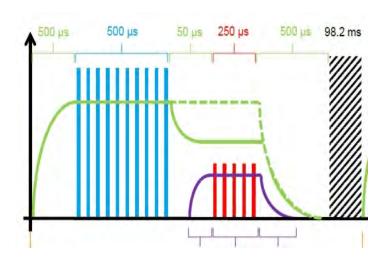
- Optik (Anpassung der Extraktion)
- Dispersion (Anpassung Extr.)
- Orbit im Undulator
- Operating (siehe unten)

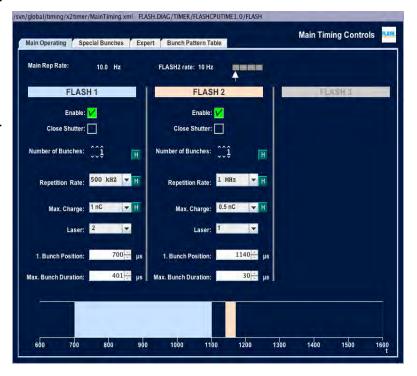

- Neue γ -Diagnostik
- Verbesserung der e^- –Diagnostik
- Inbetriebnahme der γ beam line in der neuen Experimentierhalle

Betrieb mit 2 Beam Lines : Optik


Optik (DC-Magnete!) muss für Injektor/LINAC, FLASH1 und FLASH2 passen!

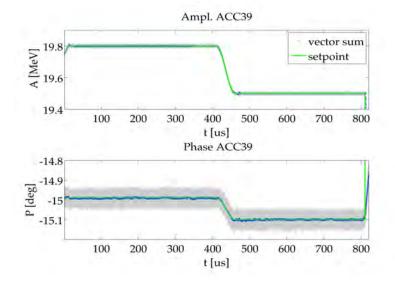
Betrieb mit 2 Beam Lines : Orbit

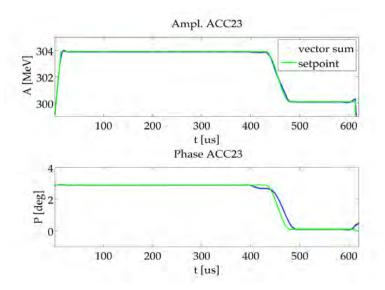



- Orbit vor Septum \rightarrow FL1 & FL2
- Sensitiver Knopf beim SASE tunen!
- Sensitiver Knopf für Transmission zu FL2
- $\rightarrow \ \mathsf{Operating} \ !!!$

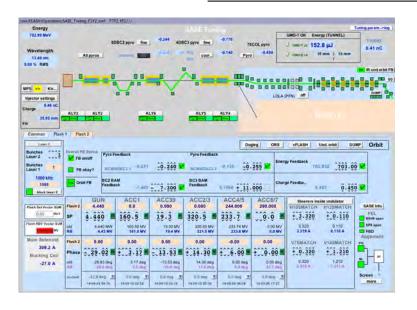
Betrieb mit 2 Beam Lines : Timing & Kontrollsystem

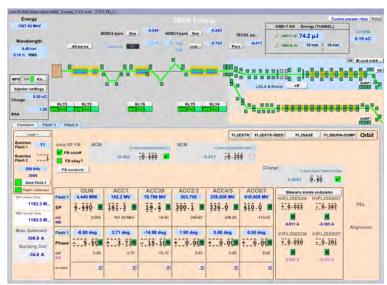
- Variable bunch patterns
- Variable Injektor–LASER Steuerung
- 2 (statt 1) "Referenzbunch(e)"
- Neues (komplizierteres) Machine-ProtectionSystem





Betrieb mit 2 Beam Lines : RF (split flat tops)


Höhere Ansprüche and Bandbreite und Flexibilität der Regelung!

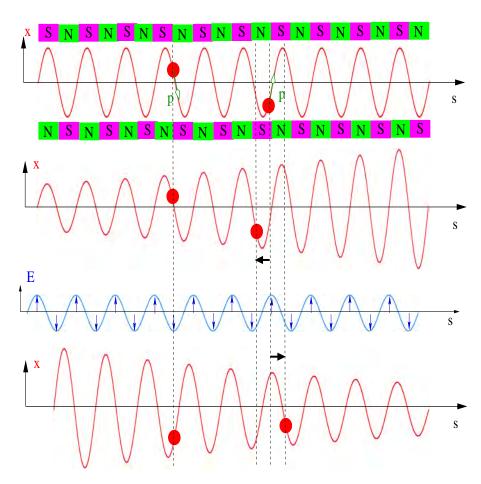

	MAIN.GUN		MAIN.ACC1		MAIN.ACC39		MAIN.ACC23		MAIN.ACC45		MAIN.ACC67	
	Flash 1	Flash 2	Flash 1	Flash 2	Flash 1	Flash 2	Flash 1	Flash 2	Flash 1	Flash 2	Flash 1	Flash 2
Amplitude	ĈĴ\$- \$ \$	<u>^</u> 23.33	îêê.\$ê	\(\hat{2}\hat{0}\cdot\hat{0}\hat{0}\hat{0}	ĴÎŶ-ĴŶ	\(\hat{2}\hat{0}\cdot\hat{0}\hat{0}\hat{0}	\$\$0.\$\$	<u> </u>	232.39	244·00	ĵĵĝ.ĝĝ	290.0 9
Phase	ĉ\$ê-ŝŝ	800 3 -99	\$008-87	£000.00	€0 13 -4\$	£000.00	£014-46	£000.00	£006.66	£009.99	£00ê-êê	£000.00
Start	Reset	\$\$\$ \$\$	Reset	\$\$\$ \$\$	Reset	\$\$\$ \$\$	Reset	\$\$\$ \$	Reset	0 400	Reset	\$60
Transition		Ĵ\$\$. QQ		Ĵ\$\$. ĝĝ		Ĵ\$\$. ĝĝ		Ĵ\$\$. ĝĝ		Ĵ\$\$. ĝĝ		Ĵ\$ĝ.ĝĝ

Betrieb mit 2 Beam Lines : Operating

- "Größerer" Beschleuniger
- ⇒ mehr Hardware, Parameter, Prozeduren, Panels
- ← Jetzt standardmäßig 2 Operateure für FLASH
- Kopplung der 2 Undulator beam lines durch den gemeinsamen Teil (Injektor & LINAC)
- ⇒ eröhte Komplexität / mehr Nebenbedingungen
- → Umdenken der Operateure (kein "losgelöstes Gepfriemel" mehr!)

Zusammenfassung

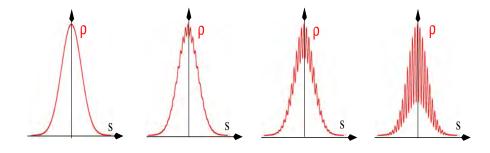
- FLASH bietet als supraleitender LINAC (hoher duty cycle) die Möglichkeit mehrere (im Moment 2) beam lines mit hoher Bunchrate zu bedienen.
- FLASH2 ist die (neue) zweite beam line
- Durch die modernen variabel gap Undulatoren kann die FLASH2
 FEL-Wellenlänge (fast) unabhängig von FLASH1 eingestellt werden.
- Die Inbetriebnahme von FLASH2 begann im letzten Jahr (2014)
- Um die FLASH1 user nicht zu verprellen, gab es nur wenig dedizierte FLASH2 Inbetriebnahme-Zeit
- Die Inbetriebnahme war soweit sehr erfolgreich : FLASH2 liefert FEL-Strahlung im Parallelbetrieb zu FLASH1 und in einem weiten Wellenlängenbereich.
- Die FLASH2 Inbetriebnahme wird nach Ein-/Um-bau der Photon beam line (ca. ab Ende Mai 2015) fortgesetzt.

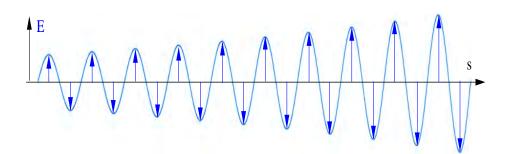

Danke für's Zuhören!!

EXTRA SLIDES:

Grundprinzip FEL : "Elektron" im Undulator + EM-Welle

- kurzwellige magnetische
 Dipol–Struktur
- Teilchen "taumelt" a
- Zusätzlich: elektromagnetische Welle
- → je nach Phase : Teilchen verliert (oben) oder gewinnt (unten) Energie
 - Dispersion im Undulator
 - Teilchen "rutscht nach hinten (oben) oder vorne (unten)

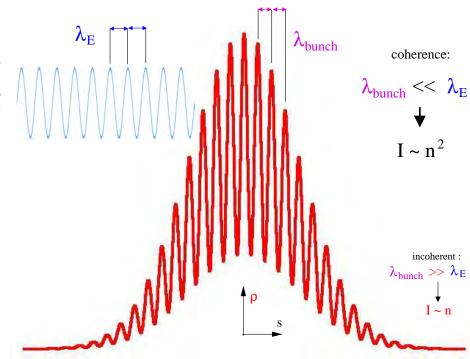

(Um das unanschauliche -1 zu vermeiden, betrachten wir Positronen)



^a die kürzeste Verbindung zwischen 2 Kneipen ist bekantermaßen die Sinuskurve

Grundprinzip FEL : Bunching im Undulator / SASE Instabilität

- Je nach Phase rutschen Teilchen im Bunch nach vorne oder hinten
- ⇒ Modulation der Ladungsdichte (=bunching)



- Bei Resonanz: Phasen mit Energiegewinn (Teilchen) werden "verdünnt"
- \Rightarrow Amplitude der EM-Welle $(\rightarrow E\text{-Feld})$ nimmt zu
- ⇒ mehr bunching
- ⇒ exponentielles Wachstum (gewollte Instabilität)
- → kann aus dem "Rauschen" (spontane Undulatorstrahlung) zünden
 - Kollektiver Effekt : gain hängt vom Anfangsspitzenstrom ab

Grundprinzip FEL: Transversale Kohärenz (vereinfacht!)

- Die einzelnen Mikrobunche sind kürzer als die Wellenlänge der Strahlung
- → die Teilchen im bunch strahlen "gemeinsam" ab (Kopplung durch Nahfelder)
- \rightarrow stimulierte Emission \rightarrow LASER
 - jeder Mikrobunch
 (mit n Teilchen) strahlt
 kohärent
 - \rightarrow insbes. gilt: Intensität $\propto n^2$

- Mikrobunche untereinander unabhängig (nicht gekoppelt)
- ⇒ Lange Bunche sind:⇒longitudinal nicht kohärent.