

Scientific Workflows Methods, Applications, Research

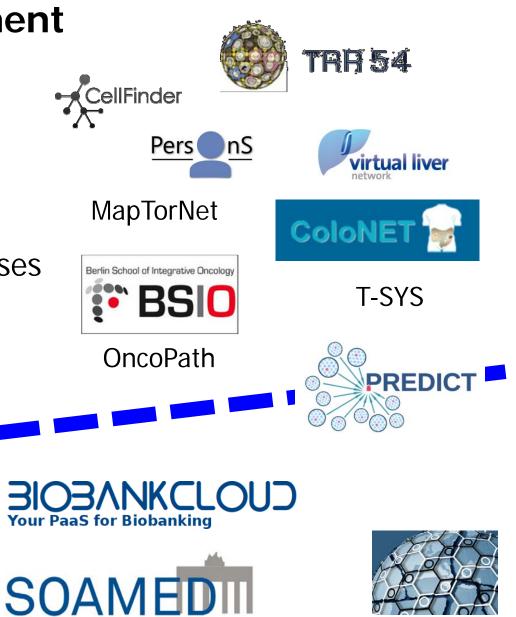
Ulf Leser, Humboldt-Universität zu Berlin

Knowledge Management in Bioinformatics

• Data Integration, Databases

s mpatix

- Biomedical Text Mining
- Scientific Workflows



StratoSphere

Big Data Processing

Big Data

Big Scientific Data

Large Hydron Collider at CERN: 15 PB a year

Australian Square kilometer array: 7,5TB/sec = 230 exabyte/year

Supercomputers to the Rescue

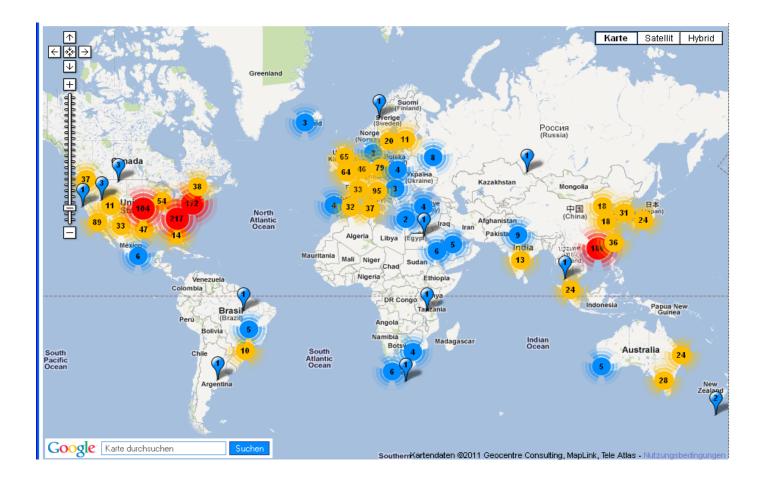
Also Big Scientific Data

NovaSeq Genome Sequencer: 3TB/day Entire human genome in one day First human genome: 12 years

Everyday Big Scientific Data

http://pathogenomics.bham.ac.uk/hts/

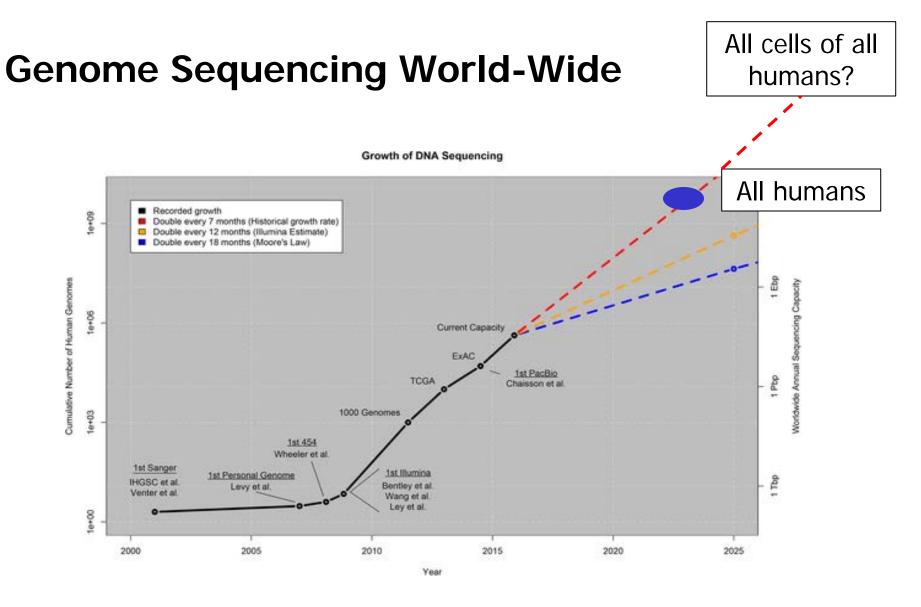
Everyday Big Scientific Data



http://pathogenomics.bham.ac.uk/hts/

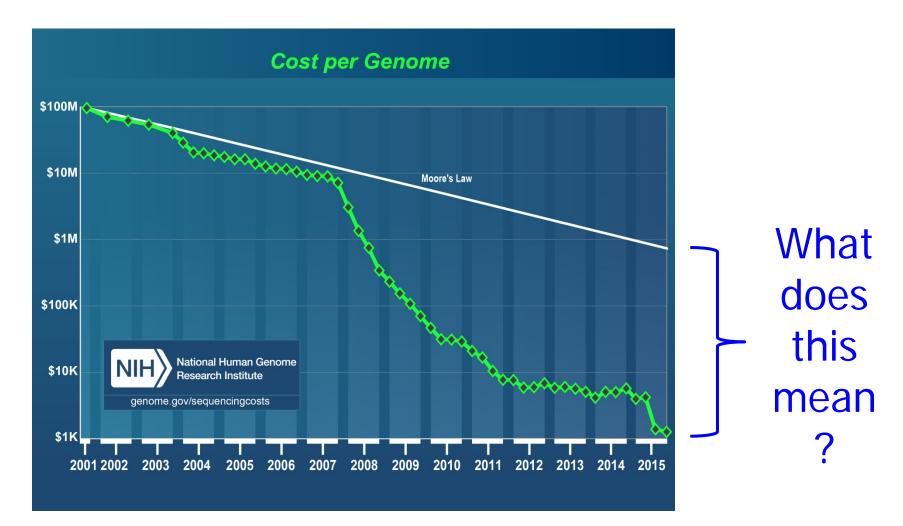
Everyday Big Scientific Data

http://pathogenomics.bham.ac.uk/hts/



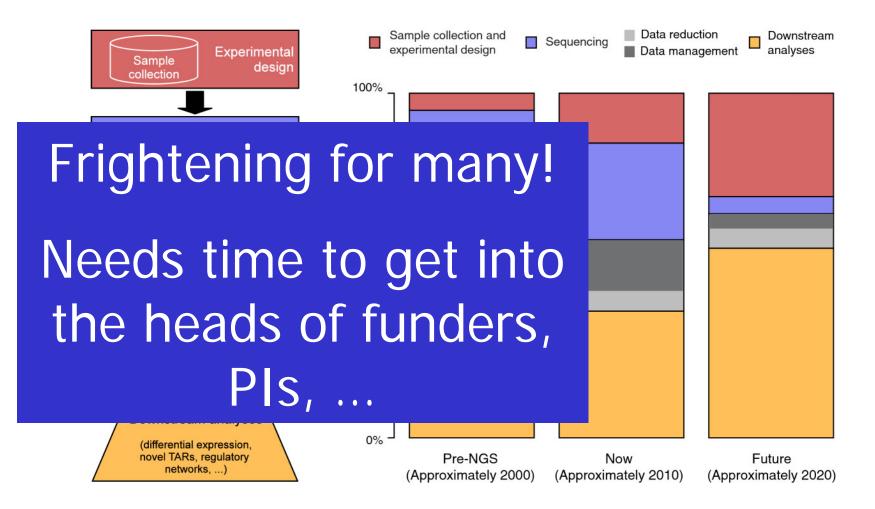
Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, et al. (2015) Big Data: Astronomical or Genomical?. PLOS Biology 13(7): e1002195. https://doi.org/10.1371/journal.pbio.1002195

Possible Through Cost Reduction

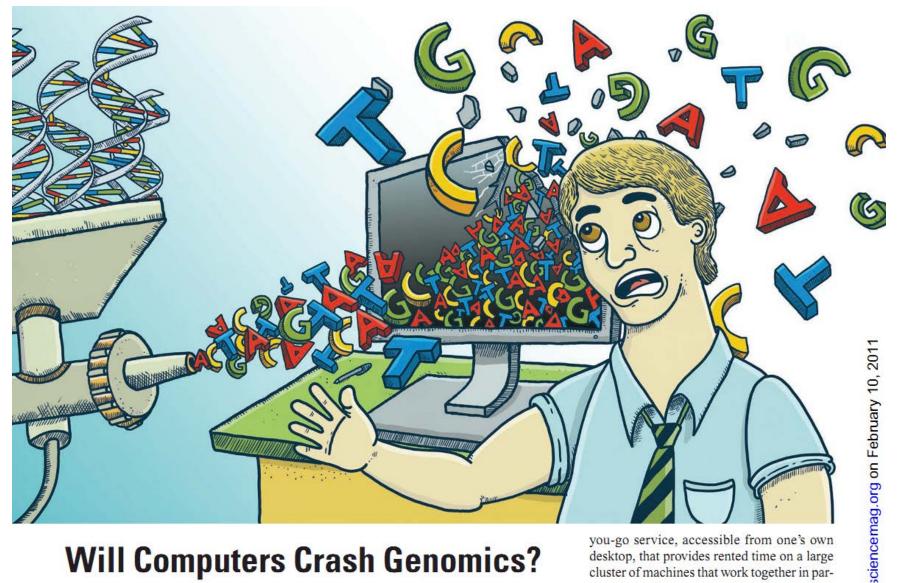


http://www.genome.gov

The "real" Cost of Genomic Sequencing



Sboner, A. (2011). The real cost of sequencing: higher than you think! Genome Biology 2011



Will Computers Crash Genomics?

you-go service, accessible from one's own desktop, that provides rented time on a large cluster of machines that work together in par-

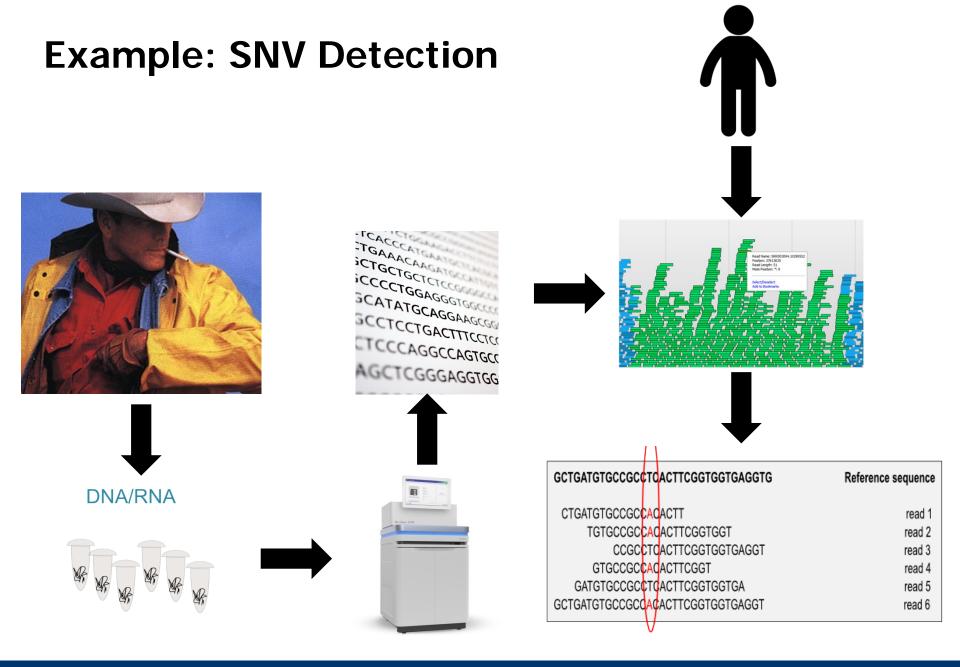
Pennisi, E. (2011). Science

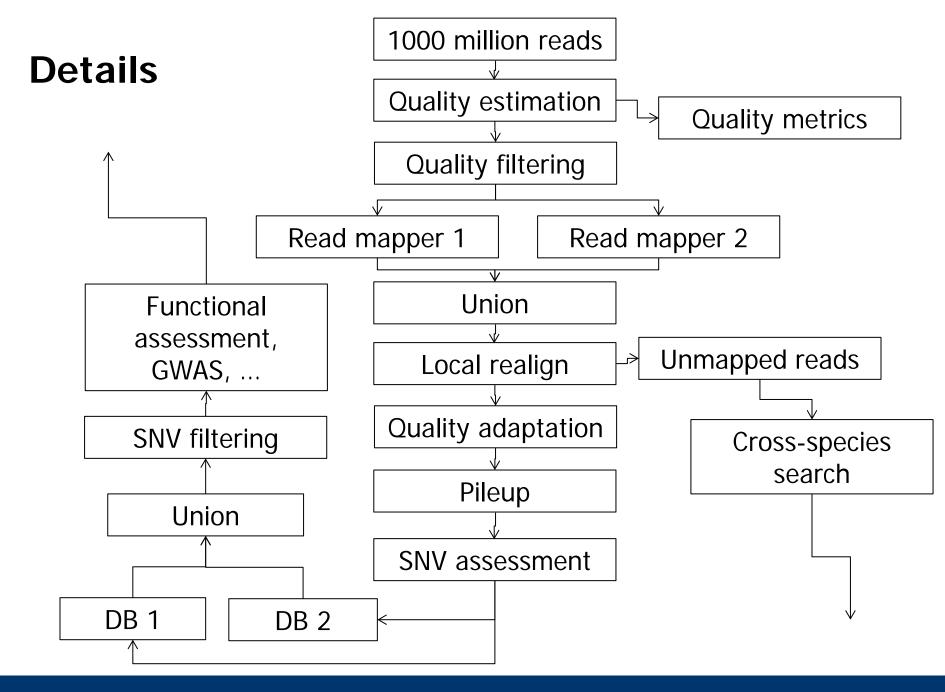
Supercomputers to the Rescue?

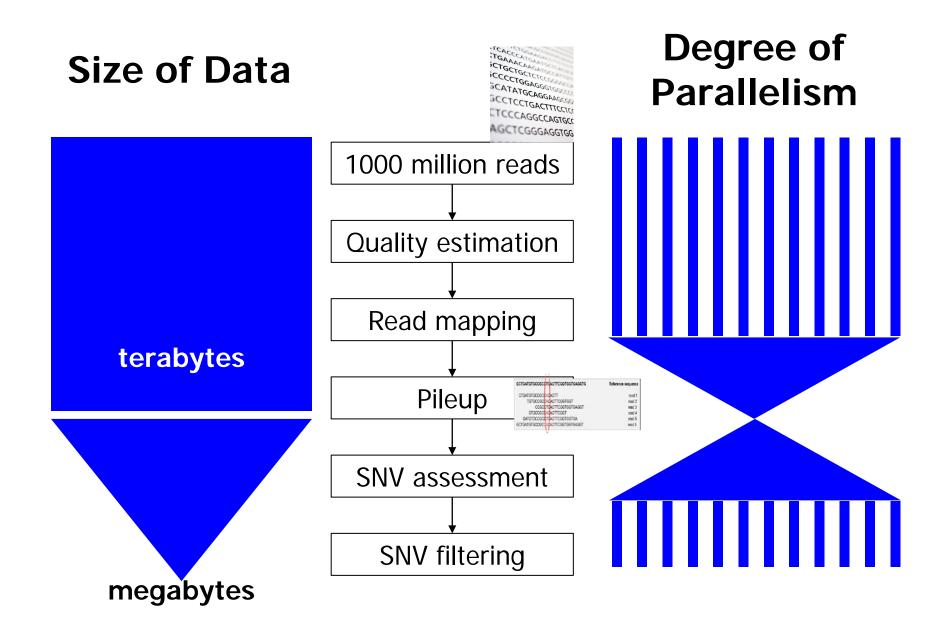
Consequences

- Not every hospital will buy a supercomputer
- Actually: Google, Facebook, Twitter etc. don't buy supercomputers
- Do we always need a supercomputer for Big Data?

Data Parallel Problems

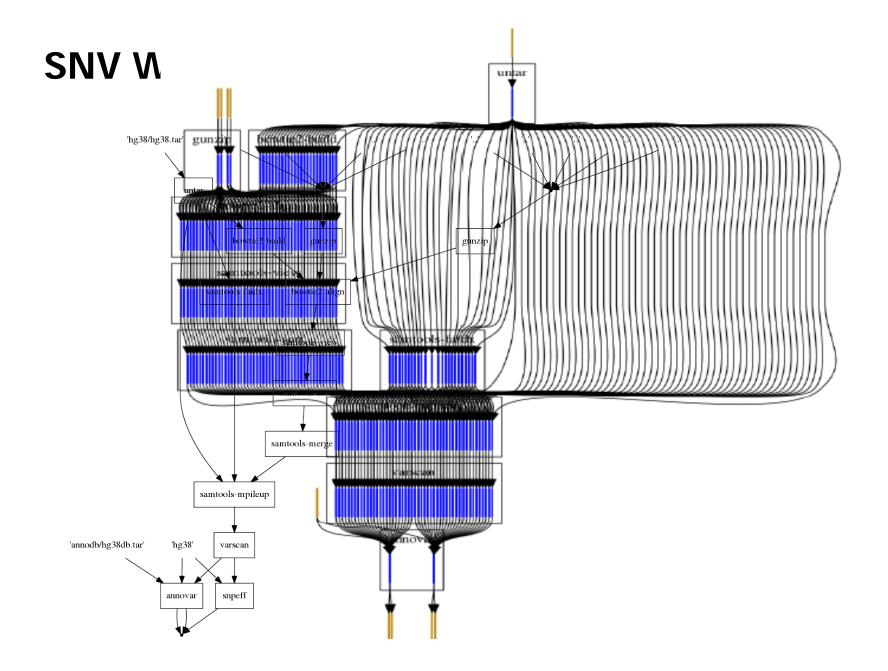




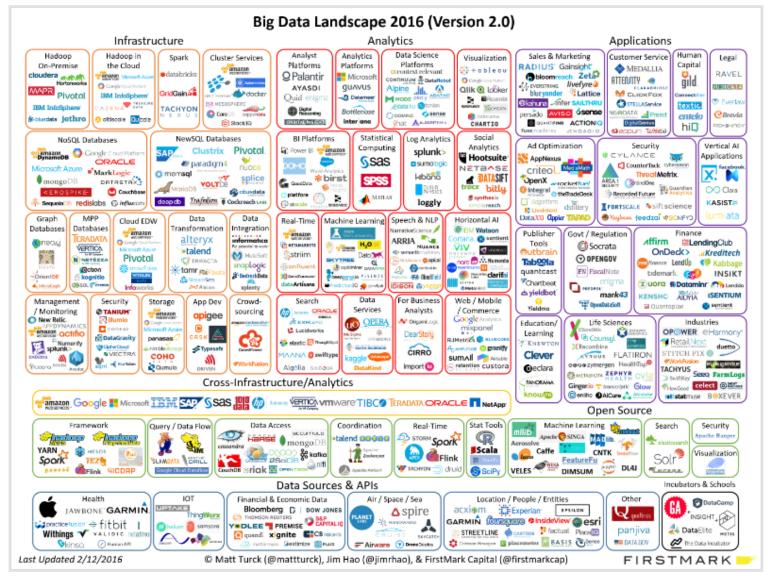


Embarrassingly Parallel

- Many scientific data analysis problems are mostly embarrassingly parallel
 - Exceptions: Simulation
- Provided the right software, these can be run perfectly on clusters of commodity hardware
 - Many cheap machines
 - Many examples



Mainstream



Embarrassingly Parallel

- Many scientific data analysis problems are mostly embarrassingly parallel
 - Exceptions: Simulation
- Provided the right software, these can be run perfectly on clusters of commodity hardware
 - Many cheap machines
 - Examples: Hadoop, Mesus, Flink, Spark, ...
- Will it be fast "enough"?

	sonic	dbis	rubix
type	monolithic	cluster	cluster
SWfMS	SaasFee	Saasfee	Snakemake
nodes	1	24	111
total threads	80	576	3784
memory per node	512 GB	24 / 32 GB	128 / 188 / 500 / 1000 GB
cost	11,535 €	94,719 €	~ 2,000,000 €
exec. time	24 h	7.62 h	1.14 h
throughput (exec. per year)	365	1149.61	7684.21
throughput / €	0.0316	0.0121	0.0038

	sonic	dbis	rubix	EC2 (estimated)
type	monolithic	cluster	cluster	cloud
SWfMS	SaasFee	Saasfee	Snakemake	Saasfee
nodes	1	24	111	16 (r3.4xlarge)
total threads	80	576	3784	256
memory per node	512 GB	24 / 32 GB	128 / 188 / 500 / 1000 GB	122 GB
cost	11,535 €	94,719 €	~ 2,000,000 €	~ 500 € (per run)
exec. time	24 h	7.62 h	1.14 h	~ 14 h
throughput (exec. per year)	365	1149.61	7684.21	arbitrary
throughput / €	0.0316	0.0121	0.0038	

Downsides

- You don't need expensive hardware, but ..
- You must care about failures
- You must care about IO / network
- You need to know how to program distributed systems
- You need expensive developers!
 - "... human productivity [in large-scale scientific data analysis] arguably still is the most expensive resource, trumping power, performance, and other factors ..." [NSF/DOE Workshop 2015]

Cost of Implementing Pipelines

Published algorithm, all tools available as open source:

~3 PM implementation

		•		
	sonic	dbis	rubix	EC2 (estimated)
type	monolithic	cluster	cluster	cloud
SWfMS	SaasFee	Saasfee	Snakemake	Saasfee
nodes	1	24	111	16 (r3.4xlarge)
total threads	80	576	3784	256
memory per node	512 GB	24 / 32 GB	128 / 188 / 500 / 1000	122 GB
cost	11,535 €	94,719 €	~ 2,000,000€	~ 500 € (per run)
exec. time	24 h	7.62 h	1.14 h	~ 14 h
throughput	365	1149.61	7684.21	arbitrary
throughput / €	0.0316	0.0121	0.0038	

Cost of Implementing Pipelines

Experts available on both systems:

~2 PM port

	sonic	dbis	rubix	EC2 (estimated)
type	monolithic	cluster	cluster	cloud
SWfMS	SaasFee	Saasfee	Snakemake	Saasfee
nodes	1	24	111	16 (r3.4xlarge)
total threads	80	576	3784	256
memory per node	512 GB	24 / 32 GB	128 / 188 / 500 / 1000	122 GB
cost	11,535 €	94,719 €	~ 2,000,000€	~ 500 € (per run)
exec. time	24 h	7.62 h	1.14 h	~ 14 h
throughput	365	1149.61	7684.21	arbitrary
throughput / €	0.0316	0.0121	0.0038	

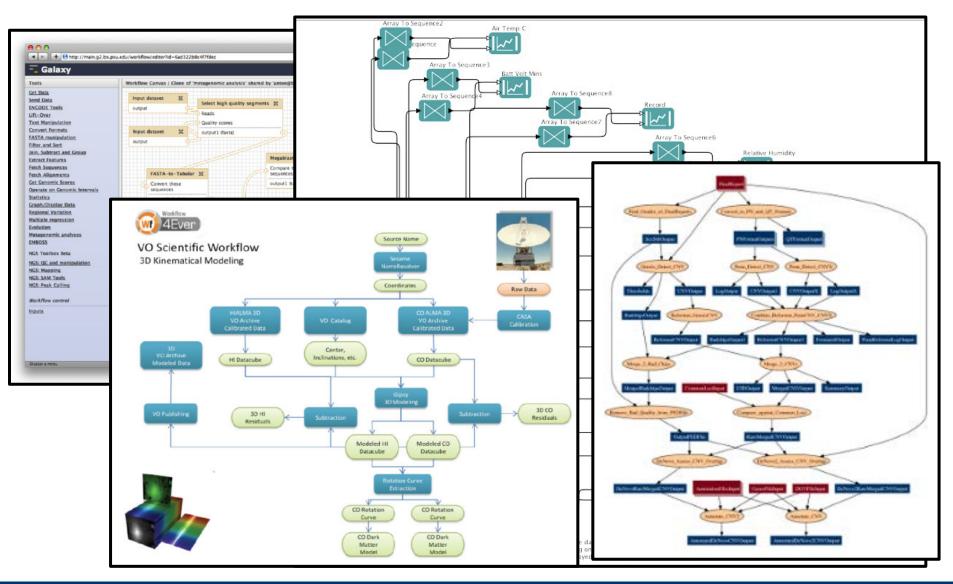
Cost of Implementing Pipelines

System supports different engines: ~0 PM port

	sonic	dbis	rubix	EC2 (estimated)
type	monolithic	cluster	cluster	cloud
SWfMS	SaasFee	Saasfee	Snakemake	Saasfee
nodes	1	24	111	16 (r3.4xlarge)
total threads	80	576	3784	256
memory per node	512 GB	24 / 32 GB	128 / 188 / 500 / 1000	122 GB
cost	11,535€	94,719 €	~ 2,000,000 €	~ 500 € (per run)
exec. time	24 h	7.62 h	1.14 h	~ 14 h
throughput	365	1149.61	7684.21	arbitrary
throughput / €	0.0316	0.0121	0.0038	

Scientific Workflow Management Systems

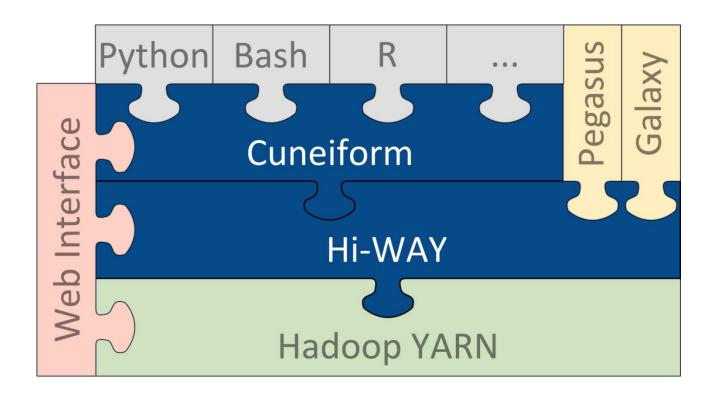
Many!



Scientific Workflows for Data Analysis

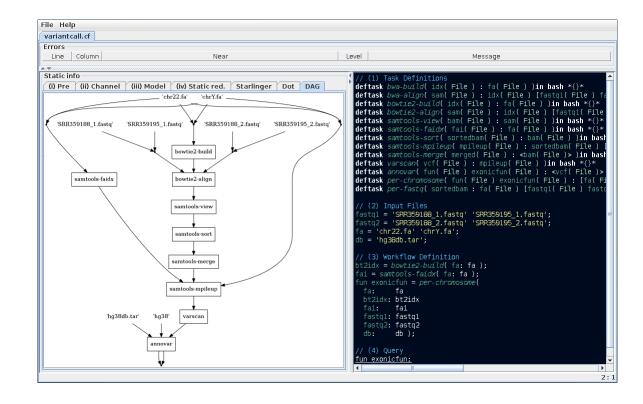
- Data parallel problems
 - Scheduling on distributed execution engines
- One-shot batch processing
 - No streaming, no data management, no indexing, ...
- DAG-structured workflows of black-box tasks
 - Easy to create, hard to optimize
- Commodity hardware: Fault Tolerance & slow IO
 - Replicate data, control activities of worker nodes
- Scientific principles: Reproducibility
 - Provenance management and analysis
- Scientific workflow management system

SaasFee: Merging MapReduce and SWF



www.saasfee.io

Cuneiform



- Light-weight statically typed functional dataflow language
- Compiles into dynamic pipelines of black-box tools
- Make foreign code integration as easy as possible
- Allow complex, iterative workflows

Foreign Code Interface

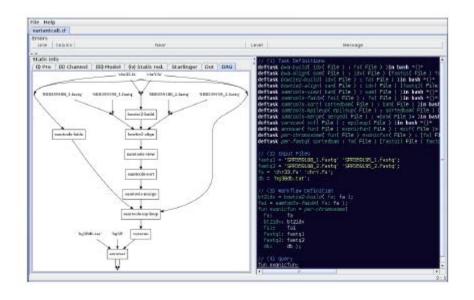
- Directly integrates BASH, LISP, R, MatLab, Python ...
- No wrapping, no data (un)marshalling, no API
- Communication via variables or files
- Mixing of several languages
- Snippets are shipped and executed by Hi-Way

```
deftask greet( out : person )in bash *{
    out="Hello $person"
}*
deftask greet( out : person )in r *{
    out = paste( "Hello", person )
}*
```

Achieving Parallelism in Cuneiform

Task Parallelism

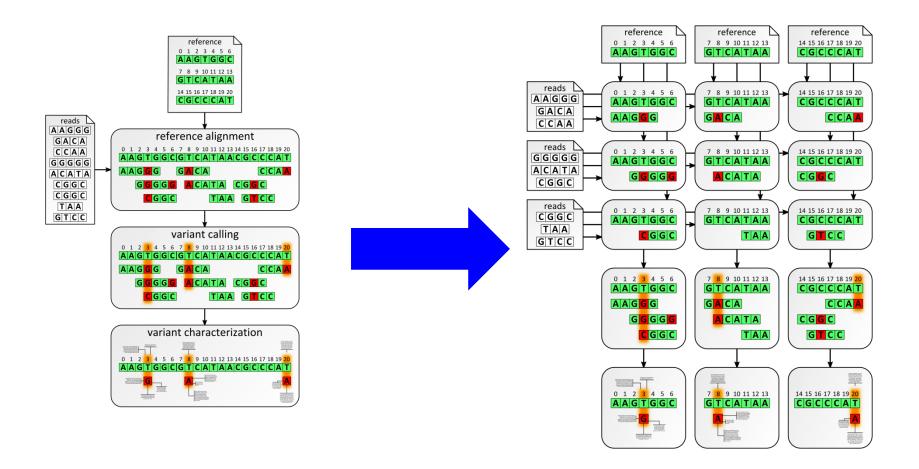
• Data dependencies



Data Parallelism

- Custom partitioning
 - Default for record-oriented files
- Algorithmic skeletons
 - Map, cross-product, dotproduct, aggregation, ...
- Subsumes Map&Reduce

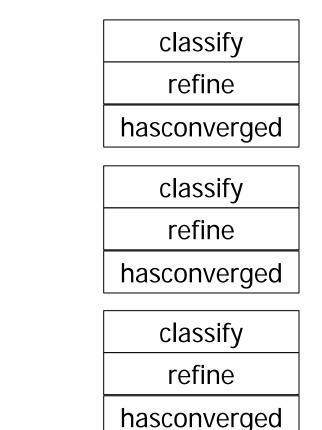
Parallelism



Dynamic Workflows

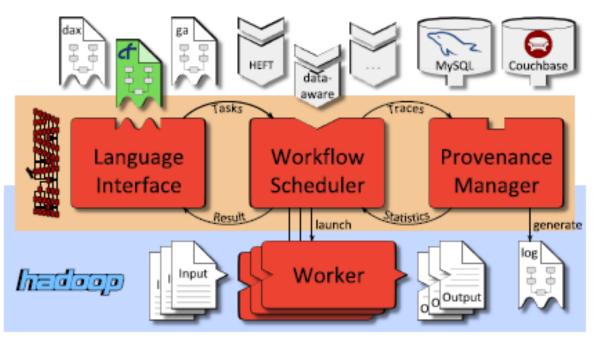
- No static execution plan but graph reduction
- Hi-Way polls ready-to-exec tasks, reports completed tasks

```
deftask classify( labeled( File )
        : dataset( File ) meanset( File ) )in python
deftask refine( meanset1( File )
        : labeled( File ) )in python
deftask has converged ( <converged> q1
        : dataset( File ) meanset( File ) q )in python
deftask kmeans( result( File )
        : dataset( File ) meanset( File ) q ) {
    labeled = classify( dataset: dataset
                        meanset: meanset ):
    meanset1 = refine( labeled: labeled );
    converged q1 = hasconverged( dataset: dataset
                                  meanset: meanset1
                                           a):
                                  q:
    result = if converged ( result : ) then {
        result = meanset1;
    } else {
        result = kmeans( dataset: dataset
                         meanset: meanset1
                                  q1):
                         q:
    }
}
```



Hi-Way

- Hi-Way Workflow Application Master for YARN
- Executes workflows on Hadoop YARN
 - Scalability, maintenance, fault tolerance, ...
- Full provenance tracing, executable provenance
- Runs Cuneiform, Galaxy, Pegasus (DAX)
- Various (adaptive) schedulers
- Dynamic workflow interface



Research Topics (at WBI)

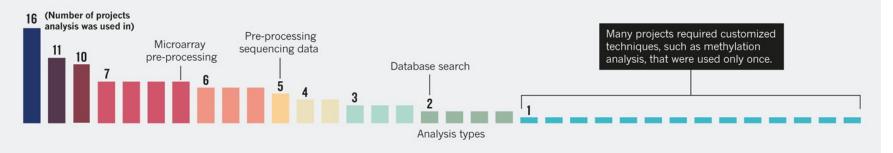
Ulf Leser: Scientific Workflows, DESY, 03/2018

- Workflow Similarity Search
- Workflow Optimization (by reordering)
- Workflow Scheduling
- Workflow Scheduling using Online Learning

All Analytics is the Same?

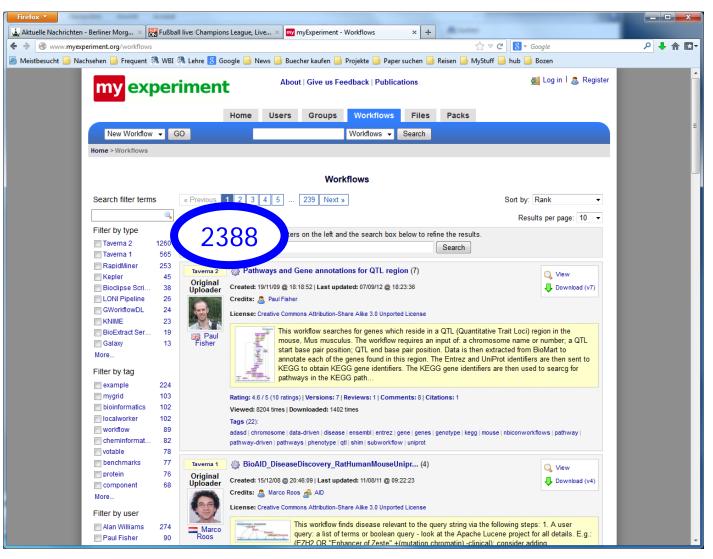
ROUTINELY UNIQUE

Over 18 months, 46 data-analysis projects undertaken at the bioinformatics core of the University of Texas Health Science Center at Houston required 34 different types of analysis — most were used infrequently. Each project demanded unique combinations of analyses, demonstrating how bioinformaticians must be versatile, creative and collaborative.



Chang, Core services: Reward bioinformaticians, Nature 2015

myExperiment

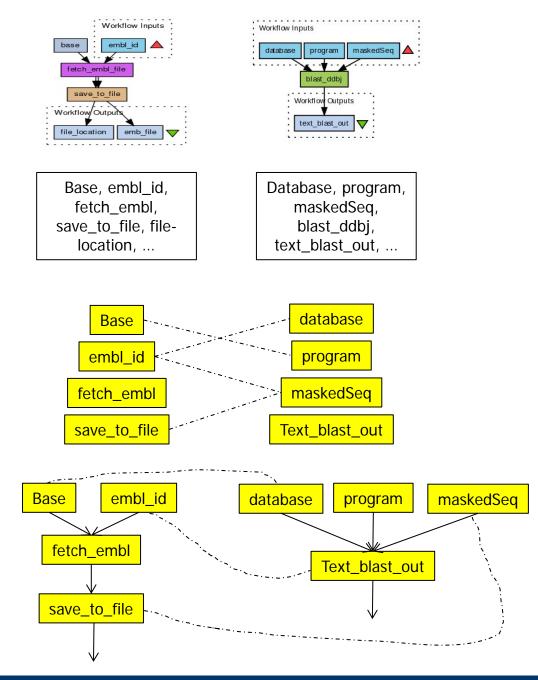


Workflow Similarity Search

• Naïve

Task sets

• Topological



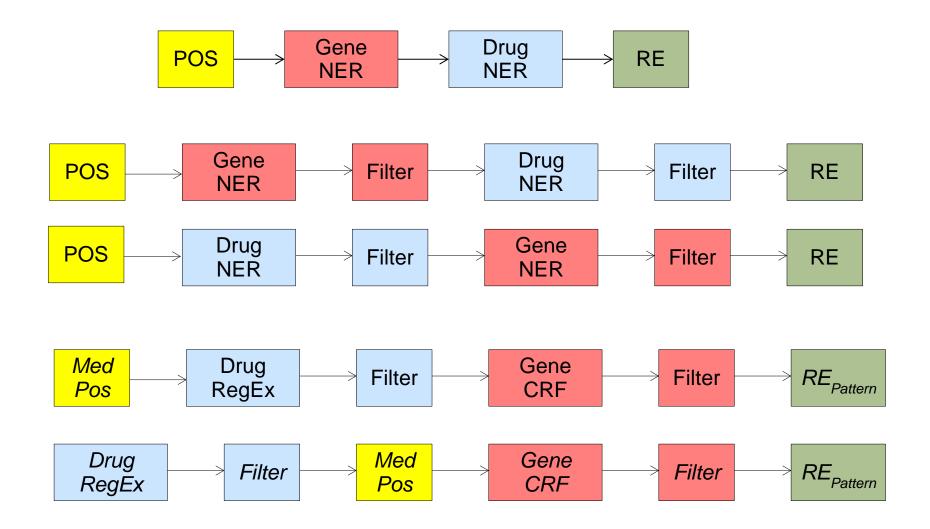
Named Entity Recognition

Z-100 is an *arabinomannan* extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (**IFN-gamma**) and beta-chemokines. The effects of **Z-100** on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes. Z-100 was found to inhibit HIV-1 expression, even when added 24 h after infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv vector (in which the *env* gene is defective and the *nef* gene is replaced with the *firefly luciferase* gene) when this vector was transfected directly into MDMs. These findings suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100 also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs, suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100 induced **IFN-beta** production in these cells, resulting in induction of the 16-kDa **CCAAT/enhancer binding protein (C/EBP) beta transcription factor** that represses HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1 replication in **MDMs**. These findings suggest that **Z-100** might be a useful immunomodulator for control of HIV-1 infection.

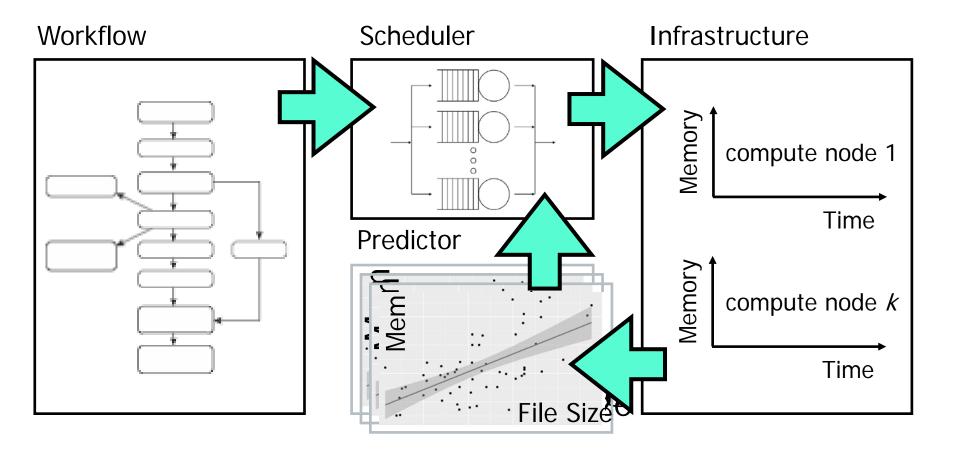
Find Relationships

Z-100 i an arabinomannan extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (**IFN-gamma**) and beta-chemokines. The effects of $Z-\overline{100}$ on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes. Z-100 vas found to inhibit HIV-1 expression, even when added 24 h after infection. In addition, it substantially innibited the expression of the pNL43lucDeltaenv vector (in which the *env* gene is defective and the *nef* gene is replaced with the *firefly luciferase* gene) when this vector was transfected directly into MDMs. These findings suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100 also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs. suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100 induced **IFN-beta Adduction** in these cells, resulting in induction of the 16-kDa CCAA T/enhancer binding protein (C/EBP) beta transcription factor that represses HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1 replication in MDMs. These findings suggest that Z-100 might be a useful immunomodulator for control of HIV-1 infection.

Workflow Optimization

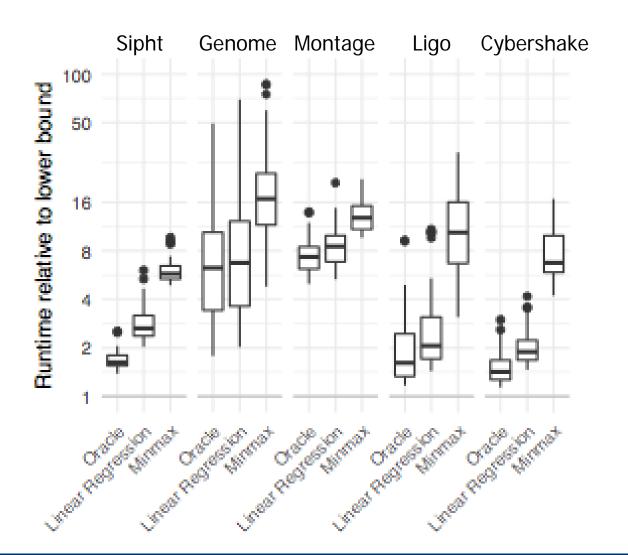


Online Scheduling



Runtimes

 Median runtime relative to lower bound



Other Research Topics

- Specification Languages: Powerful, intuitive, extensible
- Generic execution engines: De-coupling specification from execution
- Cross-layer optimization: Considering data locality and task placement
- Stream-based systems: Extreme pipelining
- Portability: Containerization / Virtualization
- Workflows for data integration
- Workflows for data visualization

Acknowledgements

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Technologie

Alexander von Humboldt Stiftung/Foundation

Ulf Leser: Scientific Workflows, DESY, 03/2018