Ein Theoretiker: was macht der eigentlich?

Karl Jansen

- Ein kleines Experiment
- Das Standardmodell: kurz und bündig
- Theorie bei DESY
 - Phänomenologie/Störungstheorie
 - Gitter
- Offene Fragen
- Ideen und Modelle

Was macht ein theoretischer Physiker? Eine Internet Recherche.

• Sie rechnen allerhand Geschwindigkeiten, Dichte, etc aus und versuchen NICHT, es zu belegen.

- Sie machen seltsame Annahmen, die sie noch viel abstruser zu belegen suchen. Realität spielt dabei eine kleine oder gar keine Rolle.
- aber nun so ein theoPhysiker macht praktisch viel Theorie, die da all so daliegt. also da liegen paar quanten rum und stringtangas, das wird alles relativiert, berechnet, zusammenhänge gebildet, ein neues weltbild geschaffen, um dann paar jahre später festzustellen, esist eigentlich ganz anders. aber schön war es doch.
- Die Physik beschäftigt sich mit den Vorgängen in der Natur und versucht diese durch möglichst exaktes Messen festzuhalten. Die theoretische Physik versucht diese Vorgänge und deren Messergebnisse mathematisch zu erklären oder gar Vorhersagen für mögliche Vorgänge in der Natur zu treffen.

Was macht ein theoretischer Physiker? Ein kleines Experiment.

Fragmentation of rods by cascading cracks: why spaghetti do not break in half

Basile Audoly and Sébastien Neukirch Lab. de Modélisation en Mécanique, CNRS/UPMC, 4 place Jussieu, Paris, France. (Dated: December 22, 2004)

When thin brittle rods such as dry spaghetti pasta are bent beyond their limit curvature, they often break into more than two pieces, typically three or four. With the aim to understand these multiple breakings, we study the dynamics of a rod bent just below its limit curvature and suddenly released at one end. We find that the sudden relaxation of the curvature at the newly freed end leads to a burst of flexural waves, whose dynamics are described by a self-similar solution with no adjustable parameters. These flexural waves locally *increase* the curvature in the rod and we argue that this counter-intuitive mechanism is responsible for the fragmentation of brittle rods under bending. A simple experiment supporting the claim is presented.

PACS numbers: 62.20.Mk, 46.50.+a, 46.70.De

The physical process of fragmentation is relevant to several areas of science and technology. Because different physical phenomena are at work during the fragmentation of a solid body, it has mainly been studied from a statistical viewpoint [1–5]. Nevertheless a growing number of works have included physical considerations: surface energy contributions [6], nucleation and growth properties of the fracture process [7], elastic buckling [8, 9], and stress wave propagation [10]. Usually, in dynamic fragmentation, the abrupt application of fracturing forces (e.g. by an impact) triggers numerous elementary breaking processes, making a statistical study of the fragments sizes possible. This is opposed to quasi-static fragmentation where a solid is crushed or broken at small applied velocities [11]. Here we consider such a quasi-static experiment whereby a dry spaghetti is bent beyond its limit curvature. This experiment is famous as, most of the time, the pasta does not break in half but typically in three to ten pieces. In this Letter, we explain this multiple failure process and point out a general mechanism of cascading failure in rods: a breaking event induces strong

FIG. 1: The dynamics of a rod fragment following the initial breaking event in a brittle rod is modelled by releasing at time t = 0 a rod with fixed length L, initial curvature κ_0 and no initial velocity.

problem is that the length L of the fragment is known in advance. In the model problem, the rod is initially uniformly bent and at rest. This is achieved by clamping one end and applying a moment M_0 at the other end: M_0 plays the role of the internal moment transmitted across the section that is about to fail, see Fig. 1. At time t =0, this end is suddenly released as the applied moment M_0 is removed instantaneously. The rod no longer is in equilibrium and we study its subsequent dynamics.

Vom Atom zu den Quarks

AtomKernProtonProtonQuarksElektronProtonQuarksQuarks?KernNeutronGluons?

starke Kraft

Wechselwirkung

s 00000000 Gluon

elektroschwache Kraft

Teilchen

Wechselwirkung

e

Moton Photon

Leptonen

W, Z-Boson

Quarks sind die fundamentalen Bausteine der Materie

Streuergebnis unabhängig von der Energie im Experiment

Interpretation (Feynman): Streuung an einem einzelnen Quark in einem Proton

Aber: Quarks können nicht frei beobachtet werden, sondern treten nur in gebundenen Zuständen auf \rightarrow Confinement

Das komplette Teilchenspektrum

Standard-Teilchen

- es gibt drei Generationen
- Gibt es das Higgsboson?
- Gravitation, Wechselwirkungteilchen \rightarrow Graviton

Theoretische Beschreibung der Wechselwirkung

Feynman-Diagramme

Quantenfeldtheorie: Quantentheorie+Relativitätstheorie

- \rightarrow simultane Betrachtung von Raum <u>und</u> Zeit
- → Impuls- und Energieerhaltung
- → spontane Erzeugung und Vernichtung von Teilchen und Antiteilchen Paaren

 \rightarrow 4-dimensionale Integrale:

 $\int d^4k \frac{1}{k^2 + M^2}$

k Impuls in der Schleife M die Masse des betrachteten Teilchens Mehr Quanteneffekte

mehr Schleifen

Schleifen-Diagramme

kompliziertere Strukturen

Pinguin-Diagramme

sehr komplizierte Integrale und komplexe Rechnungen Berechnung einzelner Integrale kann Tage bis Wochen in Anspruch nehmen

Im Prinzip: Berücksichtigung unendlich vieler Schleifen

Praktisch: Abbruch nach *n*-Schleifen: Störungstheorie

← gerechtfertigt wenn Wechselwirkung schwach (Kopplung klein)

Warum wir an die Quantenfeld-Theorien gauben

Quanten-Elektrodynamik (QED)

⇒ Störungstheorie 4-Schleifen-Rechnung

anomales magnetisches Moment des Elektrons

 $a_e(\text{theorie}) = 1159652201.1(2.1)(27.1) \cdot 10^{-12}$ $a_e(\text{experiment}) = 1159652188.4(4.3) \cdot 10^{-12}$

anomales magnetisches Moment des Muons

 $a_e(\text{theorie}) = 11659169.6(9.4) \cdot 10^{-10}$ $a_e(\text{experiment}) = 11659203.0(8.0) \cdot 10^{-10}$

$Berechnungen \rightarrow Vorhersagen$

Berechnung des Wirkungsquerschnitt für LEP-Experimente

 \rightarrow Bestätigung der Existenz von drei Generationen

Reduktion

• viele O(1000) Feynman-Diagramme \rightarrow viele O(1000) Integrale

• nicht praktikabel \Rightarrow Nachdenken!

• Reduktion auf Masterintegrale

- Gröbner Basen
- Mellin-Barnes
- Theorie der Wörter

 \Rightarrow O(1000) \rightarrow O(10) Integrale

Formalisierung

- Rechnung folgt festen Regeln
- ⇒ Möglichkeit der Computerberechnung
- Aufstellen der Feynman-Diagramme (DIANA, QGRAF, FEYNART)
 ↓↓
- Entsprechende Integrale hinschreiben (FORM, oft eigene Programme)
 ↓↓
- Reduktion
 (FORM, MATAD)
 ↓↓
- Berechnung

(Form, Maple, Mathematica) \rightarrow output C oder Fortran codes

 \Rightarrow explizite Auswertung und graphische Darstellung

Die Theoriegruppe stellt sich vor

Elastische e^+e^- Streuung (T. Riemann et.al.)

Beiträge für den International Linear Collider

(Teile der) Diagramme

Elastische e^+e^- Streuung

(Teile der) Formeln

$$\begin{split} K_A(x,y;z) &= \frac{1}{3(y-z)} \Big\{ -2\frac{F_e}{e} \left(x+y\right)^2 \ln\left(-\frac{m_e^2}{x}\right) + 4\,\zeta_2 \Big[z^2 - z\Big(\frac{x^2}{y}+y\Big) \\ &+ 2x\,(x+y) + y^2 \Big] + 2\,\Big[z\,(x+y) + x^2 \Big] \,\ln\left(-\frac{m_e^2}{x}\right) + \Big[z^2 + 2\,z\,x \\ &- y\,(2\,x+y) \Big] \,\ln^2\left(-\frac{m_e^2}{x}\right) + \Big[2\,z^2\left(\frac{x}{y}+1\right) - z\left(\frac{x^2}{y}+6\,x+5\,y\right) \\ &+ x\,(x+4\,y) + 3\,y^2 \Big] \,\ln\left(-\frac{m_e^2}{y}\right) + \Big[z^2 - 2\,z\left(\frac{x^2}{y}+x+y\right) \\ &+ 2\,x\,(x+y) + y^2 \Big] \,\ln^2\left(-\frac{m_e^2}{y}\right) - 2\,\Big[z^2 + 2\,z\,x + 2\,x\,(x+y) \\ &+ y^2 \Big] \,\ln\left(-\frac{m_e^2}{x}\right) \,\ln\left(-\frac{m_e^2}{y}\right) + \Big[2\,z^2\left(\frac{x}{y}+1\right) - z\left(\frac{x^2}{y}+4\,x+3\,y\right) \\ &+ (x+y)^2 \Big] \,\ln\left(\frac{z}{m_e^2}\right) + \Big[2\,z\left(\frac{x^2}{y}+2\,x+y\right) - (x+y)^2 \Big] \,\ln^2\left(\frac{z}{m_e^2}\right) \end{split}$$

$$-2 (x+y)^{2} \ln\left(\frac{z}{m_{e}^{2}}\right) \ln\left(-\frac{m_{e}^{2}}{x}\right) + 2 \left[z^{2} - 2z\left(\frac{x^{2}}{y} + x + y\right) + 2x(x) + y\right] + \left[z^{2} + 2z\left(\frac{z}{m_{e}^{2}}\right) \ln\left(1 - \frac{z}{y}\right) - \left[2z^{2}\left(\frac{x}{y} + 1\right) - z\left(\frac{x^{2}}{y} + 6x + 5y\right)\right] + \left[\frac{y}{z}(x+y)^{2} + 2x(x+3y) + 4y^{2}\right] \ln\left(1 - \frac{z}{y}\right) + 2 \left[z^{2} + 2zx\right] + 2x(x+y) + y^{2} \ln\left(1 - \frac{z}{y}\right) \ln\left(-\frac{m_{e}^{2}}{x}\right) + 4 \left[\frac{z^{2}}{2} - z\left(\frac{x^{2}}{y} + x + y\right)\right] + x(x+y) + \frac{y^{2}}{2} \left[\operatorname{Li}_{2}\left(\frac{z}{y}\right) + 2(x+z)^{2}\operatorname{Li}_{2}\left(1 + \frac{z}{x}\right)\right],$$

$$K_B(x,y;z) = \frac{1}{3(y-z)} \left\{ -4 \frac{F_e}{e} \left[x \ (x+y) + \frac{y^2}{2} \right] \ln\left(-\frac{m_e^2}{x}\right) + 4 \zeta_2 \left[z^2 - 2 z \left(\frac{x^2}{y} + \frac{y}{2}\right) + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z \ (x+y) - x \ y \right] \ln\left(-\frac{m_e^2}{x}\right) + \left[z^2 + 2 z \ x - y \ (2 x + y) \right] \ln^2\left(-\frac{m_e^2}{x}\right) + \left[2 z^2 \left(\frac{x}{y} + 1\right) - z \left(2 \frac{x^2}{y} + 1\right) + 5 y\right) + y \ (4 x + 3 y) + 2x^2 \right] \ln\left(-\frac{m_e^2}{y}\right) + \left[z^2 - 2 z \ \left(2 \frac{x^2}{y} + x + y\right) + 2 x \ \left(2 x + y\right) + y^2 \right] \ln^2\left(-\frac{m_e^2}{y}\right) - 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y \right] + 2 x \ (2 x + y) + y^2 \right] \ln^2\left(-\frac{m_e^2}{y}\right) + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] \ln^2\left(-\frac{m_e^2}{y}\right) + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + y^2 + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + y^2 + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + y^2 + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + y^2 + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + y^2 + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + y^2 + 2 x \ (2 x + y) + y^2 \right] + 2 \left[z^2 + 2 z \ x + y^2 + 2 x \ (2 x + y) +$$

$$\times \ln\left(-\frac{m_e^2}{x}\right) \ln\left(-\frac{m_e^2}{y}\right) + \left[2\,z^2\left(\frac{x}{y}+1\right) - z\left(2\,\frac{x^2}{y}+4\,x+3\,y\right) \right. \\ \left. + 2\,x\,(x+y) + y^2\right] \ln\left(\frac{z}{m_e^2}\right) + 4\left[z\left(\frac{x^2}{y}+x+\frac{y}{2}\right) - \frac{x}{2}\,(x+y) - \frac{y^2}{4}\right] \right. \\ \left. \times \,\ln^2\left(\frac{z}{m_e^2}\right) - 4\left[x\,(x+y) + \frac{y^2}{2}\right] \ln\left(\frac{z}{m_e^2}\right) \ln\left(-\frac{m_e^2}{x}\right) + 2\left[z^2 - 4z\left(\frac{x^2}{y}\right) \right] \\ \left. + \frac{x}{2} + \frac{y}{2}\right) + 2x\,(2x+y) + y^2 \ln\left(\frac{z}{m_e^2}\right) \ln\left(1 - \frac{z}{y}\right) - \left[2\,z^2\left(\frac{x}{y}+1\right)\right] \\ \left. - 2\,z\left(\frac{x^2}{y}+3\,x+\frac{5}{2}\,y\right) - 2\,\frac{y}{z}\left(x^2+x\,y+\frac{y^2}{2}\right) + 2\,(2\,x^2+2\,y^2 + 3\,x\,y) \right] \ln\left(1 - \frac{z}{y}\right) + 2\left[z^2 + 2\,z\,x+2\,x\,(2\,x+y) + y^2\right] \\ \left. \times \,\ln\left(1 - \frac{z}{y}\right) \ln\left(-\frac{m_e^2}{x}\right) + 2\left[z^2 - 2\,z\left(2\,\frac{x^2}{y}+x+y\right) + 2\,x\,(2\,x+y) + y^2\right] \\ \left. + y^2\right] \operatorname{Li}_2\left(\frac{z}{y}\right) + 2\,(z^2 + 2\,x\,z+2\,x^2)\,\operatorname{Li}_2\left(1 + \frac{z}{x}\right) \right\},$$

$$K_{C}(x,y;z) = \frac{1}{3(y-z)} \left\{ 2\frac{F_{\epsilon}}{\epsilon} x^{2} \ln\left(-\frac{m_{e}^{2}}{x}\right) + 4\zeta_{2} x^{2} \left(\frac{z}{y} - 2\right) - 2(x^{2} + y^{2} + xy) \ln\left(-\frac{m_{e}^{2}}{x}\right) + x^{2} \left(\frac{z}{y} - 1\right) \ln\left(-\frac{m_{e}^{2}}{y}\right) + 2x^{2} \left(\frac{z}{y} - 1\right) \ln^{2} \left(-\frac{m_{e}^{2}}{y}\right) \right\}$$

$$+ 4x^{2}\ln\left(-\frac{m_{e}^{2}}{x}\right)\ln\left(-\frac{m_{e}^{2}}{y}\right) + x^{2}\left(\frac{z}{y}-1\right)\ln\left(\frac{z}{m_{e}^{2}}\right) - 2x^{2}\left(\frac{z}{y}-\frac{1}{2}\right) \times$$

$$\times \ln^{2}\left(\frac{z}{m_{e}^{2}}\right) + 4x^{2}\left(\frac{z}{y}-1\right)\ln\left(\frac{z}{m_{e}^{2}}\right)\ln\left(1-\frac{z}{y}\right) + 2x^{2}\ln\left(\frac{z}{m_{e}^{2}}\right) \times$$

$$\times \ln\left(-\frac{m_{e}^{2}}{x}\right) - x^{2}\left(\frac{z}{y}+\frac{y}{z}-2\right)\ln\left(1-\frac{z}{y}\right) - 4x^{2}\ln\left(1-\frac{z}{y}\right)\ln\left(-\frac{m_{e}^{2}}{x}\right)$$

$$+ 4x^{2}\left(\frac{z}{y}-1\right)\operatorname{Li}_{2}\left(\frac{z}{y}\right) - 2x^{2}\operatorname{Li}_{2}\left(1+\frac{z}{x}\right)\right\}.$$

Elastische e^+e^- Streuung

schlussendlich: \rightarrow Vorhersagen für den International Linear Collider

$t\bar{t}$ Produktion am LHC

(S. Moch et.al.)

 $top-antitop \rightarrow Hadrons$

M [GeV]

Analyse von Strukturfunktionen bei HERA

(J. Blümlein, H. Böttcher, S. Klein)

typische Diagramme

Insgesamt gibt es ca. 2000 verschiedene Diagramme dieser Art und die Rechenzeit für ein einzelnes (komplizierteres) kann einen Tag oder mehr betragen.

Analyse von Strukturfunktionen bei HERA

Strukturfunktionen

Analyse von Strukturfunktionen bei HERA

→ Momente der Partonverteilungsfunktionen

$\int f$	n	N ³ LO	NNLO	MRST04	A02	A06
u_v	2	0.3006 ± 0.0031	0.2986 ± 0.0029	0.285	0.304	0.2947
	3	0.0877 ± 0.0012	0.0871 ± 0.0011	0.082	0.087	0.0843
	4	0.0335 ± 0.0006	0.0333 ± 0.0005	0.032	0.033	0.0319
d_v	2	0.1252 ± 0.0027	0.1239 ± 0.0026	0.115	0.120	0.1129
	3	0.0318 ± 0.0009	0.0315 ± 0.0008	0.028	0.028	0.0275
	4	0.0106 ± 0.0004	0.0105 ± 0.0004	0.009	0.010	0.0092
$u_v - d_v$	2	0.1754 ± 0.0041	0.1747 ± 0.0039	0.171	0.184	0.182
	3	0.0559 ± 0.0015	0.0556 ± 0.0014	0.055	0.059	0.057
	4	0.0229 ± 0.0007	0.0228 ± 0.0007	0.022	0.024	0.023

→ Brücke zur Gitterfeldtheorie

Das Gitter und seine gefährlichen Tiere

Wenn es kompliziert wird ...

• Das wirkliche Innenleben eines Protons

- Wert der starken Kopplung (Entwicklungsparameter) $\alpha_{\rm strong}(1 {\rm fm}) \approx 1$
- ⇒ es wird eine neue, exakte Methode benötigt
- ⇒ die Methode muss nicht-perturbativ sein
- Wilson's Vorschlag: Gitterfeldtheorie

Theorie der starken Wechselwirkung

 \rightarrow QuantumChromoDynamics

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling.

Wilson, Cargese Lecture notes 1976

Gitterfeldtheorie

Grund: komplette Theorie kann auf einem (Super)Rechner simuliert werden

Denn es ist eines ausgezeichneten Mannes nicht würdig, wertvolle Stunden wie ein Sklave im Keller der einfachen Rechnungen zu verbringen. Diese Aufgaben könnten ohne Besorgnis abgegeben werden, wenn wir Maschinen hätten.

Der Kontinuumlimes

Ziel: Diskretisierung rückgängig machen, $a \rightarrow 0$ Kontinuumslimes

Ausdehnung L fest, z.B. L = 1fm: (Proton radius)

feineres Gitter:
$$a \rightarrow a/3$$

 $\Rightarrow \mbox{ Simulationkosten wachsen } \\ \mbox{mit Faktor } 3^4 \label{eq:simulationkosten}$

Zusätzliche Kosten vom verwendeten Algorithmus: Kosten wachsen mit Faktor 3^6-3^7

Cost of fermions

- Situation: a = 0.1 fm, $M_{\pi} \approx 350$ MeV
- orginal Hybrid Monte Carlo Algorithm Duane, Kennedy, Pendleton, Rowet, Phys.Lett.B195:216-222,1987
- application of $D_{\text{lattice}}^{\text{Dirac}}$ on one lattice site: **1400flops**
- 16⁴ lattice: **270Gigaflops**
- 1500 CG iterations, 200 steps: 54Teraflops
- 5000 configurations: 270 Petaflops
- $32^3 \cdot 64$ lattice: **8500Petaflops**

European Twisted Mass Collaboration

- Cyprus (Nicosia)
- France (Orsay, Grenoble)
- Italy (Rome I,II,III, Trento)
- Netherlands (Groningen)
- Poland (Poznan)
- Spain (Valencia)
- Switzerland (Zurich)
- United Kingdom (Glasgow, Liverpool)
- Germany (Berlin, Zeuthen, Hamburg, Münster)

European Twisted Mass Collaboration

Beispiele

Indirekte Bestimmung der Pion-Streulängen (ETMC, K.J.)

Energieabhängigkeit der starken Kopplung (ALPHA, R. Sommer)

apeNEXT: ein Supercomputer im Eigenbau

Kollaboration von Physikern INFN, DESY, Universität Paris Süd (D. Pleiter, H. Simma)

- 10 Teraflops
- \approx 6000 unabhängige Prozessorknoten
- 500 MB Memory/Knoten
- 0.5Euro per Mflop

Selektion von Supercomputern

- MareNostrum, IBM, Barcelona
 40Teraflops peak performance
- Earth Simulator, NEC, Yokohama, 2002
 40Teraflops peak performance
- BlueGeneP, NIC, FZ-Jülich
 223Teraflops peak performance
- BlueGeneL, IBM, Los Alamos, 367Teraflops peak performance, Nov. 2007 (application area: not specified)
- IBM, Roadrunner, LANL,
 1.2Petaflops peak performance, Top 1
- 2005 Workshop on Zetaflop Computing

Offene Fragen in der Teilchenphysik I: wo ist das Higgsboson?

- fundamentaler Eckpfeiler der Theorie
- verantwortlich für die Massenerzeugung der Teilchen

Bem.: Theorie-Schranken an die Higgsboson-Masse: P. Gerhold, J. Kallarakal, K.J.

Offene Fragen in der Teilchenphysik II: warum genau drei Generationen?

- brauchen drei Generationen, um Zeitinvarianz zu brechen
- deshalb hören Sie mich erst, wenn ich etwas sage (glücklicherweise)
- prinzipiell sind mehr als drei Generationen nicht ausgeschlossen

Offene Fragen in der Teilchenphysik III: Quarkmassen-Hierarchie

- Quarkmassen unterscheiden sich um mehrere Größenordnungen
- was ist dafür verantwortlich?

Offene Fragen in der Teilchenphysik IV: Hierarchie der Kräfte

 \Rightarrow größte theoretische Herausforderung: Quantenfeld-Theorie der Gravitation

Offene Fragen in der Teilchenphysik V: Dunkle Materie und Energie

- 0.4% des Universums sind sichtbare Materie
 → Sterne, Erde, Monde, Meteoriten, etc.
- 22% des Universums sind dunkle Materie
 → haben nur Ideen woraus dunkle Materie besteht
- 74% des Universums sind dunkle Energie
 - → haben höchstens Spekulationen woraus dunkle Energie besteht

Offene Fragen in der Teilchenphysik VI→?

- Asymmetrie zwischen Materie und Antimaterie
- Urspung des Universums

Ideen und Modelle

• Supersymmetry

\rightarrow Symmetrie zwischen Fermionen und Bosonen

SUSY-Teilchen Ĥ IJ 5 C 202 5 5 $(\mathbf{0})$ V_{τ} 7 TS 55 $\tilde{\tau}$ e Ţ, Squarks SUSY-Kraftteilchen Sleptonen

Ideen und Modelle

• Extra Dimensionen

 \rightarrow Leben in 5 Dimensionen, wovon eine aufgerollt

• Superstrings

 \rightarrow Strings in 10 Dimensionen als Limes einer höher-dimensionalen Membran-Theorie

• ... oder doch das Gitter?

T.D. Lee, *Can Time be a discrete dynamical Variable?*, Phys.Lett.B122:217,1983 F. Jegerlehner, *The 'Ether world' and elementary particles*, hep-th/9803021

Zusammenfassung

- Die theoretische Teilchenphysik
- Leitprinzip der experimentellen Überprüfbarkeit
 - Vorhersagen für das Experiment
 - $\leftarrow \text{ komplexe und langwierige Rechnungen}$
 - simuliert Modelle der Teilchenphysik auf Supercomputern
 - ← Untersuchung nicht-perturbativer Effekte
 - entwickelt Modelle für neue Physik
 - Standardmodell der Teilchenphysik nicht vollständig!
- Es gibt viele offene Fragen
 - gibt es das Higgsboson?
 - wir verstehen nur ein Bruchteil des Universums (dunkle Energie)
 - wir wissen nicht warum Kräfte und Quarkmassen so unterschiedlich

Fazit: es gibt viel zu tun für die Theoretiker am DESY ...