
(Disk) Storage:

Hardware
Filesystems

and how to get most out of them

Standort Zeuthen

Stephan Wiesand
DESY - DV-
2005-06-21

The Challenge

● fast
● highly available
● safe
● secure
● affordable
● manageable

Hard Disks: Facts

SATA SCSI/FC

Capacity 250/300/400 GB 300 GB
Heads 10 10
Cache 8 MB 8 MB
RPM 7200 10000
media transfer rate 750 Mb/s 1 Gb/s
interface transfer rate (max) 150 MB/s 320/150 MB/s
sustained data rate (max) 60 MB/s 90 MB/s
average seek time 8.5 ms 4.5 ms
non-recoverable error rate 1E-14 1E-15
mean time to failure 1 M hours 1.4 M hours
MTTF qualified by “at low I/O duty cycle” -
relative price per GB 1 ≥3

table compiled from specifications of typical current drives

most SATA drives have no MTTF specified at all

instead: start-stop cycles (-> intended for desktop use)

More about Hard Disks

Experience:

ATA disks (& vendor test
programs) tend to be more
than optimistic about the
drive's health

“full test ok” -> reinsert ->
fails within hours

Fact:

SCSI drives tell the
controller when they
remapped a block

event is logged

early sign of drive failure

Rumour:

SATA protocol does not
allow the disk to signal

remapped a block

recalibrating, wait a few ms

Rumour:

Models exist in two flavours
one is high quality & available
from large integrators only

extra tests & selection

distinguished production lines

the other is what's available
from retail shops

RAID Levels

RAID0: Striping
every other stripe (typical size: 64 kB) resides on one of n disks

fast & cheap, but unreliable
a single broken disk kills the whole array

RAID1: Mirroring
all data resides on both of 2 disks

reasonably fast, very fault tolerant, but only 50% net capacity

RAID3/4:
n data disks + 1 parity disk => net capacity n/(n+1)

reasonably fast & fault tolerant (data survives if 1 disk breaks)

RAID5: like 3/4, but rotates parity
avoids “hot” parity disk (bottleneck & wear)

RAID6: 2 distributed parities (slower, but 2 disks may die)

RAID5

writing on RAID5 is
expensive:

1) read back old data

2)read back old parity data

3)calculate new parity data

4)write new data

5)write new parity data

most efficient if writes are
multiples of the stripe size

=> avoid small write requests
on RAID5

disk 2disk 1 disk 4disk 3

file 1

file 2

file 3

parity

How Safe is RAID5 ?

(S)ATA drives running at not-so-low-I/O duty cycle

MTTF is much rather 1E5 hours than 1E6

=> each array typically looses a drive every few months

a rebuild takes several hours

=> probability for a second drive to fail during rebuild: O(1 ‰)

=> it's going to happen, sooner or later !

RAID5 is NOT a replacement for backup

not even RAID1 is

redundant RAID levels boost availability

they don't make your data safe

Backups are not for cowards only

other potential sources of data loss:

accidental deletion (by user or admin)

failure of OS, software, firmware, hardware, wetware

crime (theft) & security breach (hacking)

other things that don't replace backup:

automatic rsync to 2nd location

storing everything on tape
they do fail, even though very rarely

note OSM allows automatic cloning by subdirectory

we can't backup all data

=> users MUST distinguish what to store where

The full cost of backup

hardware:

robot, drives, server
maintenance contracts

tapes (cloned)

possibly disk cache

bandwidth
network, tape drives - and on the disk storage device

backup software: licenses (clients, server) & maintenance

labour

tape handling (removing clones,...)

managing, monitoring & troubleshooting the service

Classes of storage

local disk (desktops, farm nodes, pubs, ...)

cheap, but completely unreliable, no backup - just scratch

right place for building software, keeping working copies of data

absolutely the wrong place for code (incl. TeX), results, ...

desktop/notebook drives die early when abused as fileservers

AFS & NFS on cheap redundant fileservers

w/o backup: still scratch, but better (& wider) availability

w/ backup: general purpose, but limited amounts only

Tape - reasonably safe especially if cloned

Home Directory - best hardware with daily backup

this is the right place for code, results, ...

DELFI

first generation cheap linux
fileservers (2001)

20 x 75GB ATA (data)

2 x 30 GB ATA (system)

3 x 8-port RAID controller

3ware 6800

2 x PIII 850 MHz, 512 MB

soon upgraded to 1 GB

Gigabit Ethernet (fibre)

benchmarks looked promising

DELFI + Care Pack

spare drives
(for about two weeks)

dedicated, battery
driven screwdriver

dedicated system
for disk tests,
firmware upgrades,
and burn-in

DELFI: Drive Problems

1st set of hard drives (IBM 75 GB) turned out to be unusable

died extremely fast, often in ways that crashed the controller

2nd set of hard drives (WD 80 GB) had their own problems

controller would often remove them due to timeouts

manufacturer's fitness test declared most of them good
some worked for months afterwards, some did not

drive firmware update from manufacturer did not resolve this

3rd try (Maxtor 120 GB) later worked well - alas, too late

drive tests, firmware updates, reusing drives, bookkeeping

major time sink

DELFI: Controller Problems

several rounds of firmware/driver/daemon updates before
stable operation was possible, this took many months

last firmware update ever for our hardware was luckily the
one that solved most problems

firmware/driver/daemon versions must match

but no more fw updates soon after deployment

driver has to match kernel

daemon must match OS (and the old one was very unstable)

=> experiments to get non-matching versions to work together
was possible until recently; but latest kernels don't work anymore

major time sink

DELFI: Other Problems

benchmarks had been run with RAID0

impossible to use the servers like this

started deploying them with RAID5 (arrays of four disks)

worked, but was really slow (and net capacity down to 75%)

replacing failed drives is an expert task

no “red LED” on failed disk, controller messages not always
reliable

lost one array because someone pulled the wrong drive

redeployed more critical servers with RAID1

acceptable speed, minimal risk of data loss

but net capacity down to 50%

DELFI: Decommissioning 2005

many components not hotswappable and not monitored

fans
about every 2nd one in the power supplies not running anymore

drive cage fan status unknown - not accessible w/o removing cage

repair work inside the system likely to break other things

delicate ATA cabling

software problems (driver or daemon)

finally running out of spare drives

even though many have been reused after 1st failure

R.I.P.

DELFI: Lessons learned

buy complete storage systems (drives & enclosure), not
components thrown together

buy from a vendor specialized in designing or composing these

avoid daemons and special drivers if possible

regular media scans are mandatory for reliable operation

find & remap bad blocks on unused disk regions - weekly

reliable alerts are important

locating and replacing failed drives must be easy and failsafe

having failed drives replaced by the vendor must be easy (and
fast!) as well

only redundant RAID levels are acceptable, even for “scratch”

Cheap fileservers, next try:

external SATA<->SCSI RAID

16 disks (250 or 400 GB)

multiple arrays possible:
1 x 7 + 1 x 8 disks RAID5

1 x global hot spare

attached to one or two servers

looks to server like a SCSI disk
no extra drivers etc.

controller sends alerts by mail

red LED on failed drives

very fast, even with RAID5
1 GB ECC cache w/ battery backup

A few months later

controllers
replaced on
suspicion (last
option)

screwdriver now
used for SATA
as well

SATA <-> SCSI RAID: Problems

devices tend to work well for several months

then they start crashing or becoming incredibly slow

every two weeks, then once a week, ...

NO indication from controller what's wrong, for months

sometimes, eventually a disk dies and life goes on

sometimes, need to disassemble the arrays
a simple dd then reveals one disk is extremely slow

only power cycles help

firmware odyssey

Recent Developments

top: drive set made serious problems with
three controllers and two backplanes

not in production since months

now latest controller model & firmware
latest fw officially still not available for our
“legacy device” purchased last August

new hardware borrowed from vendor

alas, controller crashed sunday evening
=> now 4 controllers and three backplanes

bottom: device frozen two weeks ago

since then running unofficial beta firmware

so far 3 disk timeout alerts, one with removal
of disk from array and rebuild

SATA <-> SCSI RAID: Conclusion

would be a nice solution - if it worked

no (major) loss of data due to the crashes yet

but frequent service interruptions completely unacceptable

every crash takes hours of work to recover from

=> devices cannot be used in the intended way

how to proceed with these ? - unknown yet

lessons learned:

try to get a complete solution from a single source
not: manufacturer (TW) -> technical account manager (UK) ->
integrator (DE) -> reseller (DE)

try to find a solution allowing fallback to native drive access

Relatively cheap fileservers: 3rd try

DELFI-like, again

Dell 2850 servers

6 x 300 GB disks, SCSI !

internal RAID controller

alerts from daemon AND
remote management card

easy location of failed drives

complete system from single vendor, certified for our OS

no more fingerpointing

first 4 systems (being) deployed, 4 more are ordered

Hardware: Conclusions

(too) cheap hardware consumes inordinate amounts of labour

NB: even expensive storage hardware often does

FC <-> FC redundant controller arrays purchased in Zeuthen and
Hamburg for critical data (home directories, ...)

months and months, dozens of mails and phone calls, several firmware
updates, finally replacement of hardware components before stable
operation in Zeuthen

devices in Hamburg still not fully operational

there is no such thing as cheap storage

there is no such thing as cheap storage

there is no such thing as cheap storage

don't waste it, and use it efficiently !

Theory: Common Size Limits

2GB

file size limit on older filesystems

largest signed integer representable with 32 bits

1 TB

block device size limit on SL <= 3.0.4, Solaris <= 9 update x, ...

40 bits ? - devices are addressed by block (512 bytes => +9 bits)

2 TB

block device size limit on many current operating systems

Solaris 10 lifts its, as does 64-bit linux 2.6

even so, 2TB limit often still applies
Solaris 10 SCSI driver

LVM: Logical Volume Management

physical volumes (PVs)

devices (whole disk)

partitions (of disks)

volume groups (VGs)

built from PVs

logical volumes (LVs)

allocated from VG

ice39 (2x20 GB ATA)

hda1, hdc1 form VG00

/, swap, /afs_cache,
/usr1 on LVs in VG00

hda hdc

Partition 2

Partition 1

Partition 1

/boot
/
swap
/afs_cache

/usr1

/usr1

LVM possibilities (Linux; Solaris similar)

create & remove volume groups - online

add physical volumes to a volume group - online

remove free physical volumes from a volume group - online

move data between physical volumes - online

dangerous for striped logical volumes (only)

create, remove, grow, shrink logical volumes - online

filesystems still need to be resized as well

allocation schemes: next free, contiguous, striped (= RAID0)
Linux 2.6 device mapper adds mirroring (= RAID1)

snapshots

=> stop thinking in terms of of disks, start thinking of volumes

SAN: Storage Area Network

storage is not attached to servers but to the SAN

typically through a storage controller (...)

chunks of storage are mapped on one or more systems

where they appear as block devices

-> filesystems, logical volumes

every computer may have access to any storage device

-> shared storage (high availability solutions)

NOT a shared filesystem, just shared storage

the catch: cost

controllers, switches, cabling, host bus adapters, expertise

Zeuthen operates (non-switched) “mini SAN” (mainly homedirs)

SAN

System 1 System 2 System 3 System 4

Local Filesystems: Solaris

UFS

journaled (optional)
fast recovery after crashes w/o need for fsck

no resizing

not particularly fast (should have improved with Solaris 9)

default in Zeuthen (not journaled)

commercial 3rd party products

Veritas VXFS

ZFS (“Zetabyte FS”)

next generation filesystem that can do anything

was scheduled for Solaris 10, but not quite ready yet

Local Filesystems: Linux

ext2/ext3
ext3 is journaled

different modes

resizable (up & down)
SL3: offline, SL4: online
growth limit for older fs

very reliable

very good fsck

many say it's slow
esp. ext3

the only filesystem supported
on RHEL

ext3 is default in Zeuthen
metadata-only journaling for
bulk data

xfs (from SGI)
all features incl. online resize

journals metadata only

supposed to be very fast

not available with RH/SL
needs hacked kernel (CERN
does this, but...)

JFS (from IBM)
journaled filesystem w/
many features

no experience yet

ReiserFS(4)
no experience yet

burned fingers with V3

Shared Filesystems: NFS (V3)

1995, enhancements over V2 (1989)

initially designed to be a stateless protocol

impossible to get close to usual filesystem semantics w/o state

=> additional mount protocol, lock manager

outage of server or client now is a significant event

=> additional reboot notification service (statd)

usage is still simple

server: exportfs -o rw,async client.ifh.de:/data

client: mount server.ifh.de:/data /nfs/data

servers and clients aren't

NFS V3 in practice

fast and fairly reliable

as long as ratio clients/server << 10

as long as ALL users of a server are knowledgeable & careful
any access to one directory with 40000 files renders server unusable for
all clients (at least with ext2/3)

exporting reiserfs does not work perfectly, xfs should but no experience

linux client still problematic

frequently have to reboot clients after server/network
downtimes

users sitting in mount points prevent automatic recovery all
the time

recently stability problems with linux server (needs restart)

NFS V3 in practice, continued

no quotas on large fileservers (avoid slower start & operation)

also avoid the 5th daemon/service

limited # of independent filesystems per server

=> how to do NFS on shared multi-TB fileservers ?

some clients often starve when a server is under high load

interoperability problems between vendor implementations

linux TCP implementation not yet stable

last stress test was complete desaster

UDP limits requests to 8 kB

makes RAID5 arrays even slower to write on

rfcp is recommended for NFS writes, NOT cp

rfio

developed at CERN, predecessor of CASTOR

TCP based client server application

userland server -> write operations happen in larger chunks
faster on RAID5

reading makes little difference, but possible as well

rfcp as installed in Zeuthen is a wrapper script

allows using rfcp like cp on NFS paths

falls back to cp if destination not reachable by rfio
AFS, unknown/unconfigured server

rfio installation in Zeuthen is currently unmaintained but still
works

NFS V3 limitations

security: only host based authentication

export into untrusted networks/subnets simply hazardous
actually includes desktops, notebooks, HH, other sites

to access someone else's data in NFS:
find a host the filesystem is exported to

hack it, or replace it by your notebook, or steal it's IP address

assume any ID you like and read/delete/modify/add data as you please

[don't really do or even try this - it's too easy but still illegal]

data is tied to the server it resides on

w/o SAN + LVM it's even tied to the storage attached to the
server

location and mount points need to be maintained on any client

NFS V3 limitations, continued

result: moving data to different storage and/or servers

is extremely tedious & impossible without interrupting the
service

“Dear user xyz, we urgently have to replace a bunch of old breaking hard
drives. Your data now available under /net/x/y/z will be available read-only
starting 2005-x-y h1:m1 to hh:mm when we copy it to the new location
/net/a/b/c, where it will be available read/write after the completion of
the copy process which is scheduled for 2005-x-y h2:m2. ...”

for the same reasons: load balancing not feasible

no replication of data => load sharing impossible

except if users distribute their data across locations, according
to anticipated usage

in practice, they never do this (actually tend to do the opposite)

typical access scheme

this week next week next month autumn

server A server B server C server D

client client client client client client client client client client

desired access scheme

server A server B server C server D

client client client client client client client client client client

NFS V4: many improvements over V3

Kerberos V authentication => reasonably secure

single protocol over TCP => WAN usage feasible

client side caching with well defined semantics & validation

V3 clients cache “for about 1 second” without validation

richer protocol for improved performance and concurrency

replication of readonly data with automatic client failover

migration of data between servers

alas:

only the first two items are actually implemented yet

only available with latest OS releases (SL4, Solaris 10)

NFS: Summary

current V3 has severe shortcomings in

security

scalability

availability

manageability

V4 will improve on this significantly, once fully available

today, it solves the security problem only
at the cost of simplicity and ease of use

next year, it may solve more problems

for the time being, developers seem to be fighting several of
the same problems V3 has in practice (reboot recovery...)

dCache

joint project: DESY & FNAL

namespace (/acs/...) provided
by PNFS server

“perfectly normal file system”

actually, NFS V2

pool nodes cache files until pool
full, then discard least recently
used file

client does not
care where data
is cached

pool
node

pool
node

pool
node

tape robot

pool
node

PNFS
server

client
read request

use node 3

fetch file from tape

using dCache

client access by

dccp command (copy whole files)

dcap library (dc_open, dc_close, dc_seek, dc_read, ...)
/opt/products/dcache/default/{include|lib}

ROOT interface exists

tunable via environment variables
readahead, deferred writes, ...

preload library
replaces normal library calls (open, ...) with dcache versions
LD_PRELOAD=.../libpdcap.so my_app

my_app may now call open() etc. on cached files from tape

also tunable via environment

does not work for all applications

dCache features

load balancing and load sharing

more than one pool node may have a copy of a file

new copies via pool->pool or tape->pool if pools overloaded

separate read/write pools

cheap read pools, best quality write pools

possibility to transfer files from write to read pool between
servers, no need to retrieve file from tape

may even be used without tape backing at all

resilient mode: keeps a desired number of copies on different
nodes (which may be very cheap or unreliable then...)

can be configured to be secure (Kerberos 5)

dCache limitations & drawbacks

PNFS server is single point of failure

files can not be modified, only deleted and rewritten

not an “ordinary” filesystem

files are not available for reading before closed

proper design & configuration is NOT simple...

not open source

limit for concurrent clients applies per pool, not per node

problem if multiple pools on one node

stores files on pool nodes in a single flat directory per pool

problem if pools are large (many files/directory)

dCache in Zeuthen

still limited setup

write pools are sufficient, several smaller read pools have
existed for a while

recently deployed a first fast & large read pool node (1.5 TB)

still assessing optimal read cache volume

no secure setup yet

like osmcp, only available on farms, wgs, and few exceptions

dCache will be the backend for our GRID storage elements

that's secure, of course...

other than that, future deployment will depend on user's
demand/acceptance

AFS

file
server

file
server

file
server

file
server

DB
server

DB
server

DB
server

client

where is volume user.wiesand ?

 user.wiesand is on server 3

Accessing a file in AFS - Step 1: /afs/ifh.de

DB
server

DB
server

DB
server

client

where is volume root.cell ?

DB servers provide a
highly available service
with automatic client
failover Client consults its

CellServDB file or DNS
(all client configuration
needed to find any file
in AFS namespace) and
contacts one of the
volume location servers
for the ifh.de cell

Step 2: /afs/ifh.de/user

DB
server

DB
server

DB
server

client

 root.cell is on servers 1,2,3

Client tries server 1,
which is busy, then
server 2, and retrieves
the root directory of
volume root.cell. It
finds user is a mount
point for volume user.

file
server

file
server

file
server

file
server

 where is volume user ?

Step 3: /afs/ifh.de/user/f/fred

DB
server

DB
server

DB
server

client

Client retrieves the
root directory of
volume user from
server 3. It finds
f is a directory and
f/fred is a mount
point for user.fred...

file
server

file
server

file
server

file
server

 where is volume user ? volume user is on servers 3,4

AFS: Overview

data is organized in volumes and handled by fileservers

volume location is retrieved from volume location servers

1,3,5,... independent systems communicating with each other

read-write replication of location data if >n/2 systems alive
read-only if <= n/2

mount points for other volumes are embedded in the directory
tree on the volumes themselves

actually a special kind of symlink

can be created by any user who can create files in a directory

the mounted volume then appears as a subdirectory

this + DB server IP addresses builds a global /afs filesystem

AFS Volumes can be...

created & deleted

moved between fileservers, transparent for the client (!)

=> load balancing

read-only replicated to one or more fileservers

path to r/o: /afs/ifh.de/... path to r/w: /afs/.ifh.de/...

=> load sharing & high availability for read-only data

automatic client failover

replicas can be removed as well if no longer needed

mounted 0, 1, or more times anywhere in the /afs/<cell> tree

=> build your directory tree the way you like

without shuffling data around

More AFS features

backup volumes (= copy-on-write snapshots)

~/.OldFiles : snapshot of home directory taken last night
immediately retrieve files accidentally deleted today

can be created for any volume (but may double space usage)

volume quotas can be grown and shrunk anytime

fileserver partitions can be overbooked
=> efficient usage of space

when partition fills, move some volumes to new servers

access control lists (ACLs), interoperable across OSs

user defined groups (for use with ACLs)

file servers provides access statistics (for load balancing)

AFS security

kerberos authentication - AFS token = kerberos ticket

all AFS space can be accessed from desktops, notebooks,
home PCs, in Hamburg, at CERN, other labs...

servers are not accessible from anywhere, but firewall
exceptions are added if reasonable

to access someone else's data in AFS:

find a system the user is currently logged on to

hack the user's account or root on this system

you can now use the user's AFS token - until it expires
after 25 hours, you have to succeed in hacking again

[same disclaimer as for NFS: don't do it, don't try it!]

AFS drawbacks

2 GB filesize limit in current stable OpenAFS release

ACLs are per directory, not per file

host based authentication is impossible

need special solutions for cron, batch, ...

no read-write replication (are there production-ready
filesystems that do this?

volumes & files can't be striped across fileservers

no load sharing on sub-volume level

=> organize your data in volumes of reasonable size
years / months / run ranges, ...

server performance is ok, but client performance is terrible

AFS performance

before you complain about performance:

check how busy the server is (rxdebug command), you are
sharing it with a few hundred other users

make sure it's not yourself who's overloading the server
NO single fileserver can provide file service to 200 jobs on 100 fast farm
nodes at reasonable speed, especially if they do little else than I/O !

organize your data in volumes of reasonable size, spread across servers
this does NOT mean you have to access it under N different paths

consider read-only replicas for very popular volumes

stop moving data around on remote filesystems
there is NO need to mv gigabytes of data from one AFS location to another,

instead, mount volumes under different paths
if absolutely necessary, move volumes (server to server transfer)

AFS client performance

persistent client side cache with well defined semantics

often helps a lot, but sometimes is a major burden
large files, especially when mv'ed or cp'ed from AFS to AFS

there is some room left for tuning, time permitting

could use memory cache instead of disk cache

but it's possible to bypass the cache:

Atrans command (try the manpage) reads/writes without using
the AFS client

afscp wrapper script by Dirk Pleiter is more convenient/failsafe

single client still only gets 70% wire speed, but is no longer busy

many concurrent clients works better than with NFS

Recommended use in batch jobs

organize your data in volumes of reasonable size so that it can
be spread across servers

consider using several read-only replicas of data that will be
accessed by many clients simultaneously

in jobs:

transfer all input files to the local disk using Atrans

create output files on the local disk

at job end, transfer output files back using Atrans
if using NFS, use rfcp, not cp

retry transfers if they fail

don't use lockfile to limit concurrent access
check server load with rxdebug if you feel like it

Advanced (?) AFS commands

which volume is this directory in, what's the quota ?
fs listquota <path>

on which fileserver is this directory located ?
fs whereis <path>

is this a mount point, and for which volume ?
fs lsmount <directory>

create/remove a mount point
fs mkmount/rmmount <directory> <volume>

where are all the r/w and r/o copies of this volume?
vos examine <volume>

where is this volume mounted ?
lsmount <volume>

Volume Management

group admins can create volumes using afs_admin

within global group/project quotas

they can also create read-only replicas

they can not (yet?) move volumes

actually, load balancing will start after hardware problems have
been solved

no chance to balance something that's hundreds of GB large, though...

volume naming convention: no backup if second letter is “n”

“gn.rz. ...”

“un.<user>. ...”

About data handling

reading/writing large amounts of data consumes precious
resources: bandwidth, memory, load

on the server, the network, and the client (even w/o AFS...)

try not to waste those, they're expensive and not abundant

try to spread the necessary amount as evenly as possible

if users don't do this, we'll have to spend MUCH more money on
solutions that can be used without much thought

SAN + cluster filesystem at least 5 x more expensive than direct attached
storage + AFS/dCache

and: don't abuse the public login systems for this work

this won't be tolerated anymore

instead, get yourself a farm node with qrsh

Summary

storage hardware is a problem we have to solve

its total cost is always much higher than the price tag

users must classify their data and store it in the right place

make sure you get backup for data that's worth it

remember, it's going to happen...

make sure you don't waste it for bulk data rewritten daily...

2 ways to cope with ever more farm nodes, space, & I/O:

either dCache + AFS + intelligent use
NFS for few special solutions where needed

or an expensive SAN + expensive commercial filesystem

