What is Quantum Computing?

Vladimir P. Gerdt Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Russia

1. Current computers still have problems with certain mathematical problems:

These problems are used in today's current encryption methods.

Accurately modeling quantum mechanical processes.

- 2. Computers are becoming more powerful everyday.
- 3. These computers will eventually find a limit to there capabilities.

Simulating Physics with Computers

- Can a universal classical computer simulate physics *exactly*?
- Can a classical computer *efficiently* simulate quantum mechanics?

"I'm not happy with all the analyses that go with just classical theory, because Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem!"

Richard Feynman 1981

Postulates of Quantum Mechanics

Postulate 1: A closed quantum system is described by a unit vector in a complex inner product space known as state space.

Postulate 2: The evolution of a closed quantum system is described by a unitary transformation.

 $|\mathbf{y}(t)\rangle = U |\mathbf{y}(0)\rangle = \exp(-iHt) |\mathbf{y}(0)\rangle$

Postulate 3: If we measure $|\mathbf{y}\rangle$ in an orthonormal basis $|e_1\rangle, ..., |e_d\rangle$, then we obtain the result j with probability $P(j) = |\langle e_j | \mathbf{y} \rangle|^2$.

The measurement disturbs the system, leaving it in a state $|e_i\rangle$ determined by the outcome.

Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component systems.

Postulate 4

The state space of a composite physical system is the tensor product of the state spaces of the component systems.

Example: Two-qubit state space is $C^2 \otimes C^2 = C^4$

```
Computational basis states: |0\rangle \otimes |0\rangle; |0\rangle \otimes |1\rangle; |1\rangle \otimes |0\rangle; |1\rangle \otimes |1\rangle
```

Alternative notations: $|0\rangle|0\rangle$; $|0,0\rangle$; $|00\rangle$.

Multiple-qubit systems

 $a_{00} |00\rangle + a_{01} |01\rangle + a_{10} |10\rangle + a_{11} |11\rangle$

Measurement in the computational basis: $P(x, y) = |a_{xy}|^2$

General state of *n* qubits: $\sum_{x \in \{0,1\}^n} a_x | x \rangle$

Classically, requires $O(2^n)$ bits to describe the state.

"Hilbert space is a big place" - Carlton Caves

"Perhaps [...] we need a mathematical theory of quantum automata. [...] the quantum state space has far greater capacity than the classical one: [...] in the quantum case we get the exponential growth [...] the quantum behavior of the system might be much more complex than its classical simulation." – Yu Manin (1980)

