Connecting PCs o
by a custom torus network for QCD

DESY technical seminar
Zeuthen — 8 Nov 2011

Filippo Mantovani
filippo.mantovani@desy.de

(F. Mantovani, D. Pleiter, F. S. Schifano, H. Simma)

=>» Introduction
=>» Architecture of custom network
=» PCle interface of the network processor

=» High speed transceiver

Scalability < torus:

=» cost and complexity (linear in # of procs) () ¢
=» performance (in particular nearest neighbours)

=» latency (in particular nearest neighbours)

Integration:
= size

=>» power

Tightly coupled computing nodes:
=» close interface to CPU (N-P)
=» light-weight protocol (N-N)

¢
unit APEnext BG/P Cell/QPACE J l‘
2006 2008 2009
feik [GHz] 0.13 0.85 3.2
of cores - 1 4 8
DP peak Gflops] 1 13.6 100
Power W /Gflop] 9 3 15
Memory bw GByte/s] 2 13.6 25
word /flop] 1/4 1/8 1/32
Network bw Gbyte/s] 0.67 2.55 5.5
word/flop] 1/12 1/42 1/145
Network latency | [ns] ~ 300 ~ 800 ~ 3000

=» Two sided < transport requires operations
on source (TX) and on destination (RX).

=» possibly non-blocking operations < ¢ .
TX =TX; + TX¢
RX = RX; + RX¢

src dst

T —
(1% —»

sunR

~—)
)

4

=» Two sided < transport requires operations
on source (TX) and on destination (RX).
=¥ possibly non-blocking operations <
TX =TX; + TX¢
RX = RX; + RX¢

@ src dst
(™)— war)
(TX)— ~—rx)
™ R’
ravd

sunR

4

P M

Elements involved:

=» P: Processor / CPU (general purpose)
=» N: Network processor / NWP (implemented on FPGA)

Operations:

=» put: Initiator = source

=» get: Initiator = destination

FPGA PHYs FPGA

.,
<
Wil
il
<

FPGA PHYs FPGA

))]

Used in QPACE
+ Low latency

non blocking!

— Needs backpressure handling

Non-blocking on Cell (DMA),
but on Intel only PIO = — Higher latency
blocking operation!

+ Trivial backpressure handling
. Filippo Mantovani = 08412011 ... -8

Light-weight protocol:

-> datagram [Header |4 B attributes
Payload 128 B

CRC 4B

=» commands
ACK, NACK, RESTART

=» 8 virtual channels

(RX reforders p_aCkets by ftnw (M. Pivanti, S. F. Schifano, H. Simma)
matching credits — data) as used in QPACE

Network ®
PowerXCell 8i Processor Network
Memory processor (FPGA) PHYs

ER'ERRE T »

® B
- 250 MHz 4x25GY
e '—
le GB/s Link > >
- |
[] L]
[} |]
] TNW L]
[] |]
Z-
|
DCR
Ethernet
L interface 7PHY)

(slow) 10 interfaces Global
signals

=» Implement PCle-based interface ¢

of the network processor

=» Micro-benchmark of a communication model
between CPU and FPGA

=» Replace external PHYs
by high speed transceivers within FPGA

=» Test stability of the physical link with internal transceivers

Aurora (in comparison with QPACE):
=» Cell — Intel Nehalem X557002.93 / E554002.53
- FlexIO — QPI + IOH + PCle s

Gpul Gpu2

=» 2 quad-core Intel Westmere CPUs =» 2 six-core Intel Westmere CPUsé
X566703.06 GHz X5675@3.07 GHz

=» 2 IOH Intel 5520 (Tylersburg) =» 2 I0H Intel 5520 (Tylersburg)) Py

=» 2 Nvidia Fermi GPU C2050 3 GB =» 2 Nvidia Fermi GPU C2070 6 GB

Both equiped with 1 FPGA Altera StratixIV GX230 dev-kit + 1 mezzanine card (DESY)

Karl-Heinz, Carola, El. Werkstatt

MEM We have focused on this setup:

=» use different hardware: ‘ ¢
Aurora board, gpul-like,

=¥ develop an FPGA firmware implementing an
interface with the PCle (on Altera Stratix IV
GX230),

o

=» write a Linux driver and a library layer allowing user

PCle 8x applications to access the FPGA,

measure bandwidth and latency in such setup with
various communication models.

2

PCle core

Transceiver

Network processor
FPGA

1. PCl-express architecture

e in a nutshell; “

Transceiver

Network processor
FPGA

PCle core 1. PCl-express architecture
— in a nutshell;
2. The FPGA design
implementing an Nget engine
to fetch data for transmission;

Transceiver

Network processor
FPGA

1. PCl-express architecture
in a nutshell;

PCle core

2. The FPGA design
implementing an Nget engine
to fetch data for transmission;

3. Transceiver;

Transceiver

Network processor
FPGA

1. PCl-express architecture
in a nutshell;

PCle core

2. The FPGA design

implementing an Nget engine -

to fetch data for transmission;

3. Transceiver; @D

4. The Linux driver.

Transceiver

Network processor
FPGA

Header ECRC R

| | :“ = Transaction Layer I I L |)

Data Link Layer
Physical Layer

Start Seq DN geel | CRC End

| | t Transaction Layer —t I ‘ é .

Data Link Layer
Physical Layer

Transaction Layer is responsible for:
=» Storing negotiated and programmed configuration information
=» Managing link flow control
=» Enforcing ordering and Quality of Service (QoS)
=» Power management control /status
Header information may include:
=» Address/Routing
=» Data transfer Length
=» Transaction descriptor
End to End CRC checking provides additional security (optional)

Relevant Transaction Layer Packets in our talk are:

=» Memory Read — MemRd: 16 Byte header, no payload; o
=» Memory Write — MemWor: 16 Byte header, max payload 1024 Byte; ‘ ¢
=» Completion w Data — CplID: 16 Byte header, max payload 1024 Byte;

Interface Altera PCle Core < Avalon Bus

clk A N I (Y A A B I

rx_st_valid / W \
rx_st_data[127:96] - Header3 | Data3 W [patan oo
r_st_data[95:64] L] Header2 | Data2 W [Daani [
rx_st_data[63:32] - Header 1 l Data 1 \\ l Data n-2 _
rx_st_data[31:0] - Header0 | Data0 \ | patan-3 _

mstsop |\ 1\

rx_st_eop “_’__

In general:
=» PCle Genl 250 MB/s per lane;
=» PCle Gen2 500 MB/s per lane:
In our project:

=» we use PCle Gen2 8x (i.e. 8 lanes) = 4 GB/s
=» Altera Avalon-ST 128bit bus (250 MHz).

A communication scheme in which:

MemWr ¢

1. The processor triggers a read operation sending a read request to the
network processor;

A communication scheme in which:

CPU J< = {FPGA
MemRd

1. The processor triggers a read operation sending a read request to the
network processor;

2. The FPGA processes requests and sends read command to the
processor;

A communication scheme in which:

KT e T B
CplD

1. The processor triggers a read operation sending a read request to the
network processor;

2. The FPGA processes requests and sends read command to the
processor;

3. The processor answers with the data to send through the network;

A communication scheme in which:

_CPU A FPea.
MemWr

1. The processor triggers a read operation sending a read request to the
network processor;

2. The FPGA processes requests and sends read command to the
processor;

3. The processor answers with the data to send through the network;

4. When all data are arrived, the FPGA writes a notification message in
a memory location so that the processor can detect the end of the
operation.

128-bit Avalon-ST -bif Avalon-ST

MemWwr

MemRd

ntfyFifo

nget

Driver: Low level library:
-» read/write via IOCTL and/or =¥ init/release/reset;
memory map; =» read, write (IOCTL/mm);

=» polling on the notify locations. =) nget, nget_wait;

Communication library:
= TX; (trigger a send P — N) — (nget)
=» RX; (issue credit to receive data N — P) — (write)
=» TX¢ (test notification about completed TX) — (nget_wait)
=» RXf (test notification about completed RX) — (poll)

=» Data buffer allocation:

1. User-space; ¢

2. Kernel-space (copy required); P

3. Kernel-space (memory map); ¢
=» Write Nget requests via:

1. I0CTL operations;
2. Write operations on locations that are memory mapped,;

=» To detect the end of an Nget operation the network processor writes
a location in CPU’s main memory.

In order to detect the notification the application triggering the Nget
operation can:

1. allocate a memory location in user space and poll it;

2. leave to the driver the task to allocate memory for notification in
kernel space and check for memory update using a standard polling
method;

3. use the Intel macro monitor/mwait (in kernel-space).

To benchmark Nget design transactions are started in a loop such t
=¥ Inside the main loop up to N transactions are in flight.
N <64 — max # of PCIe tags supported by the macro

=» During each loop iteration M new transactions are started and then
the algorithm waits for M outstanding transactions to complete.

=» Two concurrently active transactions differ in (Ink,vc,tag).

All the Nget involved are of the same size (L bytes)

Alias |..|-1024 512 0 512 1024 15'|.]
ico || T I T 1T T N T
emd |.. [LL | (11 [[

anr | 1L LI §I||I [(L1 [
nfy b |l |] [l [11 i [11

rey || L=0256 N=08 M=04 !

get time stamp #S .

/* Start-up transactions */

for (i=0; i<N-M; i++) {
update (lnk,vc,ttag) é
start nget(lnk, vc, ttag, dmabufhp[jl, L); ‘

}
/* Main loop */
for (k=0; k<K; k++) {
for (i=0; i<M; i++) {
update (lnk,vc,ttag)
start nget(lnk, vc, ttag, dmabufhp[jl, L);

}
for (i=0; i<M; i++) {
update (lnk,vc,ttag)
start nget_notify_wait(lnk, vc, ttag);
¥
get time stamp #k

/* Drain */
for (i=0; i<N-M; i++) {
update (lnk,vc,ttag)
start nget_notify_wait(lnk, vc, ttag);
¥
get time stamp
print time stamps #E

n=64, m=32, driver mode 111

1.4 T

— "anode032 ' ¢
——— anode033 oF
—+— gpul-confl: cpuspeed ON, QPI 6.4 GT/s o ¥ ‘
12 - + 5 gpul-conf2: cpuspeed OFF, QP| 6.4 GT/s lﬁ* = ¢ ‘
~——=— gpul-conf3: cpuspeed OFF, QPI 4.8 GT/s nﬁ” .l.
—e— fermi
1L gtktest2 |
— 0.8 il
1]
2
£
S 06 | * B

T

0.4 toscosscccossscoason u” 1
%ll-t--ll-g2-.0-*¥a!

EEEEEEEEEEEELE LR
H . *
R A
0.2 emmnn=™ 7

| | | | | | .
0 512 1024 1536 2048 2560 3072 3584 4096
nget size (byte)

n=64, m=32, driver mode 111

3.5 - B
e LT LI P TELL AL EL L LI L EL L bl
3 LSgeit eI “
L . |
§ **ﬁuéi"'é“%$ R LA LT L P EE R e P
*
xx* B Iy ® %

25 e % 1

we ¥

% B T

. Ef:-%ﬁ _

bandwidth (GB/s)

anode032 +——+—

anode033 ———

gpul-confl: cpuspeed ON, QPIl 6.4 GT/s
gpul-conf2: cpuspeed OFF, QPI 6.4 GT/s —=—
gpul-conf3: cpuspeed OFF, QP 4.8 GT/s = —
fermi ——e—
gtktest? |

| | | | .
0 512 1024 1536 2048 2560 3072 3584 4096
nget size (byte)

N=64, K=1 - 84 nget regs - 1000 samples

ngetlen =256 B oo
ngetlen =512 B pmmm
ngetlen =1 KB po

(# events)/(tot events)/ (bin width)
w
T
L

average CpID len (4 DW)

n=64, m=32 ongpul

12 ol l‘
i!igl
!!!i! e
j!!ii- !"
o i!i:jij 1
al ot w "
L pil et
4 o guniaif® "
e =T ...iillijj L 1
B
= unt® a®"
5] o
E L]
2 06 iii.:E!gEEEEEEEEEEEEEEEEEEIEIEIEIEHI B
@ EQQQQﬂQﬁﬁﬂﬁﬁgﬂﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬂﬁﬁﬁwx
-] &
wk

0.4 * 4

7%*%*%%*******%%%xxx¥*
i{{ii{f{f{{ii{if{$ driver modelll [EE—
driver mode 112 ——«—
0.2 + driver mode 121 +——x—
driver mode 122 —+=—
driver mode 212 = —
driver‘mode 11; —_—

0 I

| | | | .
0 512 1024 1536 2048 2560 3072 3584 4096
nget size (byte)

=» 10 bit PMA-PCS interface width
(between the PMA and PCS layer, i.e. after 10/8 encoding). ¢
=¥» Serial link data rates: 2.5 — 5 Gbps.
=» Supported channel bonding x1, x4, x8 (x4).
=» Automatic word aligner.
=» Manual word deskew (implemented in VHDL).
=» Correct byte misalignments due to byte SerDes.
=» 8 or 16 bit per lane.
=» Frequency 250 MHz.
H g
I
-

ﬁ
[

coreclkout: transcv output, AL input,
clock for TX inside the transmitter (250 MHz);

-

=» PCIe_core_clk out: clock from PCle core (250 MHz);
=» cal_blk_clk: calibration clock (10-125 MHz); s
=» fixed_clk: RX PIPE interface (125 MHz);

=» reconfig_clk: for transcv dynamic reconfiguration (37.5-50 MHz).

PCle core_clk_out

TNW
lzso MHz

A
PLL coreclkout, 250 MHz

50 MHz 125 MHz

fixedclk
xede plLinclk_rx_cruclk

> i l¢———— pin J2
Transcelvar cal bik_clk Transceiver 125 MHz pin J

reconfig_clk

Network processor
FPGA

=» Tested with software data generation
— OK for hours;

MEM =>» Tested with GEN1 and GENZ2;

=» Tested with hardware data generation
— OK for hours;

One of the devkit seems to have an electrical
problem still not solved.

aaaaaaaaaaaaaaaaaa
BLBCELBC BCBCECECH

@ [m

MEZZANINE

@ 136 ns (=~ 1/2 of external PHYs)

Physical link latency (trcv — cable — trcv):

=» PCle protocol overhead is relatively low
(5% of the theoretical bandwidth).

=» Data fragmentation due to IOH configuration can degrade the c‘
bandwidth.

=» Micro-banchmarks of latency and bandwidth has been performed
using the Nget engine exercise in several environments.

=» Nget engine communication scheme has pros and cons. Pros: keep
the CPU free during the read. Cons: introduce latency due to the
need of request/notification for each message transmission.

High latency to detect notification.
Peak bandwidth ~ 82% of the theoretical bandwidth
(for payloads > 1 KB).

=» Embedded high-speed transceiver allows to double bandwidth
(GEN2), to reduce latency and to simplify hardware implementation
of the physical link.

L 3R 2

N
‘4

=» Tune parameters (preemphasis and VOD) of the transceiver;
=» Extract EyeQ diagram from transceiver configurator block;
=¥ Interconnect gpul < gpu?2.
=» Insert the ftnw link modules;
N.B.: The number of transceivers in the generation of FPGA used in our

tests are not enough to implement a whole network (6 high speed links for
network + 1 bus PCle)

