
Connecting PCs
by a custom torus network for QCD

DESY technical seminar

Zeuthen – 8 Nov 2011

Filippo Mantovani
filippo.mantovani@desy.de

(F. Mantovani, D. Pleiter, F. S. Schifano, H. Simma)

Overview:

➜ Introduction

➜ Architecture of custom network

➜ PCIe interface of the network processor

➜ High speed transceiver

Filippo Mantovani - 08.11.2011 – 2 –

Why a custom network?

Scalability ⇔ torus:

➜ cost and complexity (linear in # of procs)

➜ performance (in particular nearest neighbours)

➜ latency (in particular nearest neighbours)

Integration:

➜ size

➜ power

Tightly coupled computing nodes:

➜ close interface to CPU (N-P)

➜ light-weight protocol (N-N)

Filippo Mantovani - 08.11.2011 – 3 –

Previous examples

unit APEnext BG/P Cell/QPACE
2006 2008 2009

fclk [GHz] 0.13 0.85 3.2

of cores – 1 4 8

DP peak [Gflops] 1 13.6 100

Power [W/Gflop] 9 3 1.5

Memory bw [GByte/s] 2 13.6 25
[word/flop] 1/4 1/8 1/32

Network bw [Gbyte/s] 0.67 2.55 5.5
[word/flop] 1/12 1/42 1/145

Network latency [ns] ∼ 300 ∼ 800 ∼ 3000

Filippo Mantovani - 08.11.2011 – 4 –

Two sided communication model

➜ Two sided ⇔ transport requires operations
on source (TX) and on destination (RX).

➜ possibly non-blocking operations ⇔
TX = TXi + TXf

RX = RXi + RXf

Filippo Mantovani - 08.11.2011 – 5 –

Two sided communication model

➜ Two sided ⇔ transport requires operations
on source (TX) and on destination (RX).

➜ possibly non-blocking operations ⇔
TX = TXi + TXf

RX = RXi + RXf

Filippo Mantovani - 08.11.2011 – 5 –

Data paths

Elements involved:

➜ P: Processor / CPU (general purpose)

➜ N: Network processor / NWP (implemented on FPGA)

Operations:

➜ put: Initiator = source

➜ get: Initiator = destination

Filippo Mantovani - 08.11.2011 – 6 –

Communication model: RX

Filippo Mantovani - 08.11.2011 – 7 –

Communication model: TX

Used in QPACE

+ Low latency

− Needs backpressure handling

Non-blocking on Cell (DMA),
but on Intel only PIO ⇒

blocking operation!
− Higher latency

+ Trivial backpressure handling

Filippo Mantovani - 08.11.2011 – 8 –

Communication model: Link-to-Link

Light-weight protocol:

➜ datagram

➜ commands
ACK, NACK, RESTART

➜ 8 virtual channels
(RX reorders packets by
matching credits – data)

ftnw (M. Pivanti, S. F. Schifano, H. Simma)
as used in QPACE

Filippo Mantovani - 08.11.2011 – 9 –

Closer view of last example in the history: QPACE

Filippo Mantovani - 08.11.2011 – 10 –

Where I did my work?

Filippo Mantovani - 08.11.2011 – 11 –

Where I did my work?

Filippo Mantovani - 08.11.2011 – 12 –

Goals

➜ Implement PCIe-based interface

of the network processor

➜ Micro-benchmark of a communication model

between CPU and FPGA

➜ Replace external PHYs

by high speed transceivers within FPGA

➜ Test stability of the physical link with internal transceivers

Filippo Mantovani - 08.11.2011 – 13 –

Hardware setup:

Aurora (in comparison with QPACE):

➜ Cell → Intel Nehalem X5570@2.93 / E5540@2.53

➜ FlexIO → QPI + IOH + PCIe

Filippo Mantovani - 08.11.2011 – 14 –

Hardware setup:

Gpu1

➜ 2 quad-core Intel Westmere CPUs
X5667@3.06 GHz

➜ 2 IOH Intel 5520 (Tylersburg)

➜ 2 Nvidia Fermi GPU C2050 3 GB

Gpu2

➜ 2 six-core Intel Westmere CPUs
X5675@3.07 GHz

➜ 2 IOH Intel 5520 (Tylersburg)

➜ 2 Nvidia Fermi GPU C2070 6 GB

Both equiped with 1 FPGA Altera StratixIV GX230 dev-kit + 1 mezzanine card (DESY)

Filippo Mantovani - 08.11.2011 – 15 –

CPU – network processor setup:

We have focused on this setup:

➜ use different hardware:
Aurora board, gpu1-like,

➜ develop an FPGA firmware implementing an
interface with the PCIe (on Altera Stratix IV
GX230),

➜ write a Linux driver and a library layer allowing user
applications to access the FPGA,

➜ measure bandwidth and latency in such setup with
various communication models.

Filippo Mantovani - 08.11.2011 – 16 –

Sub-parts of the design:

Filippo Mantovani - 08.11.2011 – 17 –

Sub-parts of the design:

1. PCI-express architecture
in a nutshell;

Filippo Mantovani - 08.11.2011 – 17 –

Sub-parts of the design:

1. PCI-express architecture
in a nutshell;

2. The FPGA design
implementing an Nget engine
to fetch data for transmission;

Filippo Mantovani - 08.11.2011 – 17 –

Sub-parts of the design:

1. PCI-express architecture
in a nutshell;

2. The FPGA design
implementing an Nget engine
to fetch data for transmission;

3. Transceiver;

Filippo Mantovani - 08.11.2011 – 17 –

Sub-parts of the design:

1. PCI-express architecture
in a nutshell;

2. The FPGA design
implementing an Nget engine
to fetch data for transmission;

3. Transceiver;

4. The Linux driver.

Filippo Mantovani - 08.11.2011 – 17 –

PCIe architecture –1–

Filippo Mantovani - 08.11.2011 – 18 –

PCIe architecture –1–

Transaction Layer is responsible for:

➜ Storing negotiated and programmed configuration information

➜ Managing link flow control

➜ Enforcing ordering and Quality of Service (QoS)

➜ Power management control/status

Header information may include:

➜ Address/Routing

➜ Data transfer Length

➜ Transaction descriptor

End to End CRC checking provides additional security (optional)

Filippo Mantovani - 08.11.2011 – 18 –

PCIe architecture –2–

Relevant Transaction Layer Packets in our talk are:

➜ Memory Read – MemRd: 16 Byte header, no payload;

➜ Memory Write – MemWr: 16 Byte header, max payload 1024 Byte;

➜ Completion w Data – CplD: 16 Byte header, max payload 1024 Byte;

Interface Altera PCIe Core ⇔ Avalon Bus

Filippo Mantovani - 08.11.2011 – 19 –

PCIe architecture –3–

In general:

➜ PCIe Gen1 250 MB/s per lane;

➜ PCIe Gen2 500 MB/s per lane:

In our project:

➜ we use PCIe Gen2 8x (i.e. 8 lanes) ⇒ 4 GB/s

➜ Altera Avalon-ST 128bit bus (250 MHz).

Filippo Mantovani - 08.11.2011 – 20 –

The Nget engine –1–

A communication scheme in which:

1. The processor triggers a read operation sending a read request to the
network processor;

Filippo Mantovani - 08.11.2011 – 21 –

The Nget engine –1–

A communication scheme in which:

1. The processor triggers a read operation sending a read request to the
network processor;

2. The FPGA processes requests and sends read command to the
processor;

Filippo Mantovani - 08.11.2011 – 21 –

The Nget engine –1–

A communication scheme in which:

1. The processor triggers a read operation sending a read request to the
network processor;

2. The FPGA processes requests and sends read command to the
processor;

3. The processor answers with the data to send through the network;

Filippo Mantovani - 08.11.2011 – 21 –

The Nget engine –1–

A communication scheme in which:

1. The processor triggers a read operation sending a read request to the
network processor;

2. The FPGA processes requests and sends read command to the
processor;

3. The processor answers with the data to send through the network;

4. When all data are arrived, the FPGA writes a notification message in
a memory location so that the processor can detect the end of the
operation.

Filippo Mantovani - 08.11.2011 – 21 –

The Nget engine –2–

Filippo Mantovani - 08.11.2011 – 22 –

The gpe driver

Driver:

➜ read/write via IOCTL and/or
memory map;

➜ polling on the notify locations.

Low level library:

➜ init/release/reset;

➜ read, write (IOCTL/mm);

➜ nget, nget wait;

Communication library:

➜ TXi (trigger a send P → N) → (nget)

➜ RXi (issue credit to receive data N → P) → (write)

➜ TXf (test notification about completed TX) → (nget wait)

➜ RXf (test notification about completed RX) → (poll)

Filippo Mantovani - 08.11.2011 – 23 –

Driver modes

➜ Data buffer allocation:

1. User-space;
2. Kernel-space (copy required);
3. Kernel-space (memory map);

➜ Write Nget requests via:

1. IOCTL operations;
2. Write operations on locations that are memory mapped;

➜ To detect the end of an Nget operation the network processor writes
a location in CPU’s main memory.
In order to detect the notification the application triggering the Nget
operation can:

1. allocate a memory location in user space and poll it;
2. leave to the driver the task to allocate memory for notification in

kernel space and check for memory update using a standard polling
method;

3. use the Intel macro monitor/mwait (in kernel-space).

Filippo Mantovani - 08.11.2011 – 24 –

Algorithm of the Nget micro-benchmark

To benchmark Nget design transactions are started in a loop such that:

➜ Inside the main loop up to N transactions are in flight.
N ≤ 64 → max # of PCIe tags supported by the macro

➜ During each loop iteration M new transactions are started and then
the algorithm waits for M outstanding transactions to complete.

➜ Two concurrently active transactions differ in (lnk,vc,tag).

All the Nget involved are of the same size (L bytes)

Filippo Mantovani - 08.11.2011 – 25 –

Pseudo-code of the Nget micro-benchmark

get time stamp #S

/* Start -up transactions */

for (i=0; i<N-M; i++) {

update (lnk ,vc,ttag)

start nget(lnk , vc, ttag , dmabufhp[j], L);

}

/* Main loop */

for (k=0; k<K; k++) {

for (i=0; i<M; i++) {

update (lnk ,vc,ttag)

start nget(lnk , vc, ttag , dmabufhp[j], L);

}

for (i=0; i<M; i++) {

update (lnk ,vc,ttag)

start nget_notify_wait(lnk , vc , ttag);

}

get time stamp #k

}

/* Drain */

for (i=0; i<N-M; i++) {

update (lnk ,vc,ttag)

start nget_notify_wait(lnk , vc , ttag);

}

get time stamp

print time stamps #E

Filippo Mantovani - 08.11.2011 – 26 –

Nget duration – Machine comparison

Filippo Mantovani - 08.11.2011 – 27 –

Nget bandwidth – Machine comparison

Filippo Mantovani - 08.11.2011 – 28 –

PIC occupation: packet fragmentation by IOH

Filippo Mantovani - 08.11.2011 – 29 –

Driver modes

Filippo Mantovani - 08.11.2011 – 30 –

Transceivers (PIPE interface)

➜ 10 bit PMA-PCS interface width
(between the PMA and PCS layer, i.e. after 10/8 encoding).

➜ Serial link data rates: 2.5 – 5 Gbps.
➜ Supported channel bonding x1, x4, x8 (x4).
➜ Automatic word aligner.
➜ Manual word deskew (implemented in VHDL).
➜ Correct byte misalignments due to byte SerDes.
➜ 8 or 16 bit per lane.
➜ Frequency 250 MHz.

Filippo Mantovani - 08.11.2011 – 31 –

Transceivers (clock tree)

➜ coreclkout: transcv output, AL input,
clock for TX inside the transmitter (250 MHz);

➜ PCIe core clk out: clock from PCIe core (250 MHz);

➜ cal blk clk: calibration clock (10-125 MHz);

➜ fixed clk: RX PIPE interface (125 MHz);

➜ reconfig clk: for transcv dynamic reconfiguration (37.5-50 MHz).

Filippo Mantovani - 08.11.2011 – 32 –

Transceivers test-bench

➜ Tested with GEN1 and GEN2;

➜ Tested with software data generation
→ OK for hours;

➜ Tested with hardware data generation
→ OK for hours;

One of the devkit seems to have an electrical
problem still not solved.

Physical link latency (trcv – cable – trcv):
136 ns (≃ 1/2 of external PHYs)

Filippo Mantovani - 08.11.2011 – 33 –

Conclusion remarks

➜ PCIe protocol overhead is relatively low
(5% of the theoretical bandwidth).

➜ Data fragmentation due to IOH configuration can degrade the
bandwidth.

➜ Micro-banchmarks of latency and bandwidth has been performed
using the Nget engine exercise in several environments.

➜ Nget engine communication scheme has pros and cons. Pros: keep
the CPU free during the read. Cons: introduce latency due to the
need of request/notification for each message transmission.

➜ High latency to detect notification.

➜ Peak bandwidth ∼ 82% of the theoretical bandwidth
(for payloads ≥ 1 KB).

➜ Embedded high-speed transceiver allows to double bandwidth
(GEN2), to reduce latency and to simplify hardware implementation
of the physical link.

Filippo Mantovani - 08.11.2011 – 34 –

Outlook

➜ Tune parameters (preemphasis and VOD) of the transceiver;

➜ Extract EyeQ diagram from transceiver configurator block;

➜ Interconnect gpu1 ⇔ gpu2.

➜ Insert the ftnw link modules;

N.B.: The number of transceivers in the generation of FPGA used in our
tests are not enough to implement a whole network (6 high speed links for
network + 1 bus PCIe)

Filippo Mantovani - 08.11.2011 – 35 –

