Der Silicon-Detektor bei HERMES, ein Überblick über Experiment und Ergebnisse - allgemeinverständlich, nicht nur für Fachleute! -

A. Vandenbroucke, University Gent

S. Balashov, I.-M. Gregor, I. Hristova, M. Kopytin, W. Lange, J. Stewart, DESY Zeuthen

Outline

- 1. The HERMES Experiment
- 2. Recoil Detector
- 3. Silicon Recoil Detector
 → Sensors, Frame, Hybrid, Foils, Tests
- 4. Summary

The HERMES Experiment

- Experiment at DESY Hamburg
- → 27,5 GeV longitudinally polarised e[±] from HERA accelerator
- Spin like Charge fundamental property

The HERMES Experiment

Internal polarized gas target (H,D,He,Ne,Kr)

- → Tracking: Silicon, Drift Chambers
- → PID: RICH, TRD, E/p Calorimeter

The HERMES Experiment

Exclusive Processes: initial and final state fully known !

A Recoil Detector for HERMES

To improve the measurement of exclusive processes a **Recoil Detector** is presently being built.

A Recoil Detector for HERMES

- Silicon measuring low momenta protons
 - SciFi for momentum and tracking
- Photon detector to improve exclusivity
- Superconducting Magnet providing field for SciFi
- A new collimator to reduce background hits

A Recoil Detector for HERMES

Silicon Detector

•

•

Principle of Operation

۲

Principle of Operation

Principle of Operation

Inside beam vacuum

- Diamond shape around target cell
- 2 layers of silicon

→ 76 % of φ

 $\rightarrow 23^{o} < \theta < 80^{o}$

Project of DESY, Erlangen, Gent, Glasgow

Technical Seminar DESY Zeuthen, April 2004 – p.7/26

۲

Most important Requirements:

- → Large Dynamic Range required
- Vacuum compatible components
- Response linear with particle momentum

Silicon Sensors

•

•

TIGRE sensors

- Largest commercially available silicon sensor
- Double sided
- → 99 × 99 mm², 300 µm thick
- → 758 µm pitch
- -> Strip width: 702 μ m
- Si0₂ layer ensures AC-coupling

TIGRE sensors

All TIGREs have been tested:

- Bias resistors p/n side for 3 strips
 3 strips: left, middle, right
- → Interstrip resistance for 3 strips
- Coupling capacitor resistance for 3 strips
- Overall I/V–C/V characteristics: diode functionality, depletion voltage
- → Long Term Test

The Holding Frame

•

A Holding Frame

۲

Requirements for the holding frame:

- → Sufficient stability
- Suitable for vacuum applications
- Thermal expansion coefficient close to that of silicon

A Holding Frame

۲

	Silicon	Aluminium	Graphite	Shapal-M	Unit
Resistance	$10^{-4} - 10^4$	$5 \cdot 10^{-6}$	0.02	10^{12}	$\Omega \cdot cm$
Thermal Expansivity	2.6	23	7.4	4.4	$\frac{10^{-6}}{K}$
Modulus of Elasticity	170	70	15	160	GPa
Thermal Conductivity	150	130	65	100	$\frac{W}{m \cdot K}$
Outgassing Rate	n.a.	10^{-10}	$8 \cdot 10^{-11}$	$2.3 \cdot 10^{-11}$	$\frac{\text{mbar} \cdot l}{s \cdot \text{cm}^2}$
Costs per frame	n.a.	30	110	1200	€

•

A Holding Frame

۲

	Silicon	Aluminium	Graphite	Shapal-M	Unit
Resistance	$10^{-4} - 10^4$	$5 \cdot 10^{-6}$	0.02	10^{12}	$\Omega \cdot cm$
Thermal Expansivity	2.6	23	7.4	4.4	$\frac{10^{-6}}{K}$
Modulus of Elasticity	170	70	15	160	GPa
Thermal Conductivity	150	130	65	100	$\frac{W}{m \cdot K}$
Outgassing Rate	n.a.	10^{-10}	$8 \cdot 10^{-11}$	$2.3\cdot10^{-11}$	$\frac{\text{mbar} \cdot l}{s \cdot \text{cm}^2}$
Costs per frame	n.a.	30	110	1200	€

Sensors are glued with two component epoxy glue at 150°

۲

•

۲

Two readout chip candidates were tested: APC and HELIX128-3.0

•

Extend Dynamic range with Charge division method:

۲

Extend Dynamic range with Charge division method:

4 layers, with kapton cores

Glued to aluminum heatsink

Chip Tests

Chip Tests

- Basic functionality (addressing, programming)
- Uniformity checked with internal testpulse
- 372 chips tested
 64 chips needed
 153 Class A chips
 - 100 Class A1

A Module

•

An SRD Module

•

۲

Technical Seminar DESY Zeuthen, April 2004 - p.18/26

HLCU: Programming, Clock, Triggering

ACC: Repeater board, drivers/receivers

HADC: ADC, CMC, Zero Suppression

Testing

•

Prototype Testing

→ Testbeams

- DESY: MIP
- Erlangen: Low Energy protons
- Laser Test Stand
- Detailed noise optimisation
- Parameter tests

Zeuthen Lab

Technical Seminar DESY Zeuthen, April 2004 – p.21/26

Zeuthen Lab

Testbeam at DESY

Technical Seminar DESY Zeuthen, April 2004 - p.22/26

Laser Test

→ Black Box
→ Red Laser
→ X-Y Table
→ Spot ~ 20µm

Laser Test

Parameter Tests

Parameter Tests

Summary

- Development of a Silicon Recoil Detector for HERMES
- Mechanical construction fixed and working
- First SRD module being tested and optimised
- → Test installation in 2004

Danke Schön

•

- → Mechanische Werkstatt
- → Elektrische Werkstatt
- → Rechenzentrum